Exploring the influence of climatic variables on mycobiome composition and community diversity in lichens: insights from structural equation modeling analysis

Author:

Yang Jiho,Woo Jung-Jae,Kim Wonyong,Oh Seung-Yoon,Hur Jae-Seoun

Abstract

Abstract Background Lichens are symbiotic organisms composed of a fungus and a photosynthetic partner, which are key ecological bioindicators due to their sensitivity to environmental changes. The endolichenic fungi (ELF) living inside lichen thalli, are an important but understudied component of playing crucial ecological roles such as nutrient cycling and protection against environmental stressors. Therefore ELF community investigation is vital for fostering sustainable ecosystems and leveraging their ecological benefits. Deciphering the intricate relationships between ELF and their lichen hosts, alongside the influence of environmental factors on these communities, presents a significant challenge in pinpointing the underlying drivers of community structure and diversity. Results Our research demonstrated that locational factors were the main drivers of the ELF community structure, rather than host haplotype. Several climatic factors affected the diversity of the ELF community and contributed to the prevalence of different types of fungal residents within the ELF community. A decrease in isothermality was associated with a greater prevalence of pathotrophic and saprotrophic fungi within the ELF community, resulting in an overall increase in community diversity. By conducting a structural equation modeling analysis, we identified a robust link between climatic variables, fungal trophic mode abundance, and the species diversity of the ELF community. Conclusion This study’s discoveries emphasize the significance of examining climate-related factors when investigating ELF’s structure and function. The connection between fungi and climate is intricate and complex, and can be influenced by various other factors. Investigating the potential for ELF to adapt to changing climatic conditions, as well as the potential effects of changes in ELF communities on lichen function, would be valuable research areas. We anticipate that our research results will establish a basis for numerous future ELF research projects and have a significant impact on the field.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3