Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences

Author:

Wemheuer Franziska,Taylor Jessica A.,Daniel Rolf,Johnston Emma,Meinicke Peter,Thomas Torsten,Wemheuer Bernd

Abstract

Abstract Background Sequencing of 16S rRNA genes has become a powerful technique to study microbial communities and their responses towards changing environmental conditions in various ecosystems. Several tools have been developed for the prediction of functional profiles from 16S rRNA gene sequencing data, because numerous questions in ecosystem ecology require knowledge of community functions in addition to taxonomic composition. However, the accuracy of these tools relies on functional information derived from genomes available in public databases, which are often not representative of the microorganisms present in the studied ecosystem. In addition, there is also a lack of tools to predict functional gene redundancy in microbial communities. Results To address these challenges, we developed Tax4Fun2, an R package for the prediction of functional profiles and functional gene redundancies of prokaryotic communities from 16S rRNA gene sequences. We demonstrate that functional profiles predicted by Tax4Fun2 are highly correlated to functional profiles derived from metagenomes of the same samples. We further show that Tax4Fun2 has higher accuracies than PICRUSt and Tax4Fun. By incorporating user-defined, habitat-specific genomic information, the accuracy and robustness of predicted functional profiles is substantially enhanced. In addition, functional gene redundancies predicted with Tax4Fun2 are highly correlated to functional gene redundancies determined for simulated microbial communities. Conclusions Tax4Fun2 provides researchers with a unique tool to predict and investigate functional profiles of prokaryotic communities based on 16S rRNA gene sequencing data. It is easy-to-use, platform-independent and highly memory-efficient, thus enabling researchers without extensive bioinformatics knowledge or access to high-performance clusters to predict functional profiles. Another unique feature of Tax4Fun2 is that it allows researchers to calculate the redundancy of specific functions, which is a potentially important measure of how resilient a community will be to environmental perturbation. Tax4Fun2 is implemented in R and freely available at https://github.com/bwemheu/Tax4Fun2.

Funder

Deutsche Forschungsgemeinschaft

Australian Research Council

Bioplatforms Australia

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3