Microplastic exposure across trophic levels: effects on the host–microbiota of freshwater organisms

Author:

Varg Javier EdoORCID,Outomuro David,Kunce Warren,Kuehrer Lukas,Svanbäck Richard,Johansson Frank

Abstract

Abstract Background Microplastics are a pervasive pollutant widespread in the sea and freshwater from anthropogenic sources, and together with the presence of pesticides, they can have physical and chemical effects on aquatic organisms and on their microbiota. Few studies have explored the combined effects of microplastics and pesticides on the host–microbiome, and more importantly, the effects across multiple trophic levels. In this work, we studied the effects of exposure to microplastics and the pesticide deltamethrin on the diversity and abundance of the host–microbiome across a three-level food chain: daphnids–damselfly–dragonflies. Daphnids were the only organism exposed to 1 µm microplastic beads, and they were fed to damselfly larvae. Those damselfly larvae were exposed to deltamethrin and then fed to the dragonfly larvae. The microbiotas of the daphnids, damselflies, and dragonflies were analyzed. Results Exposure to microplastics and deltamethrin had a direct effect on the microbiome of the species exposed to these pollutants. An indirect effect was also found since exposure to the pollutants at lower trophic levels showed carry over effects on the diversity and abundance of the microbiome on higher trophic levels, even though the organisms at these levels where not directly exposed to the pollutants. Moreover, the exposure to deltamethrin on the damselflies negatively affected their survival rate in the presence of the dragonfly predator, but no such effects were found on damselflies fed with daphnids that had been exposed to microplastics. Conclusions Our study highlights the importance of evaluating ecotoxicological effects at the community level. Importantly, the indirect exposure to microplastics and pesticides through diet can potentially have bottom-up effects on the trophic webs.

Funder

Vetenskapsrådet

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3