Holobiont Urbanism: sampling urban beehives reveals cities’ metagenomes

Author:

Hénaff Elizabeth,Najjar Devora,Perez Miguel,Flores Regina,Woebken Christopher,Mason Christopher E.,Slavin Kevin

Abstract

Abstract Background Over half of the world’s population lives in urban areas with, according to the United Nations, nearly 70% expected to live in cities by 2050. Our cities are built by and for humans, but are also complex, adaptive biological systems involving a diversity of other living species. The majority of these species are invisible and constitute the city’s microbiome. Our design decisions for the built environment shape these invisible populations, and as inhabitants we interact with them on a constant basis. A growing body of evidence shows us that human health and well-being are dependent on these interactions. Indeed, multicellular organisms owe meaningful aspects of their development and phenotype to interactions with the microorganisms—bacteria or fungi—with which they live in continual exchange and symbiosis. Therefore, it is meaningful to establish microbial maps of the cities we inhabit. While the processing and sequencing of environmental microbiome samples can be high-throughput, gathering samples is still labor and time intensive, and can require mobilizing large numbers of volunteers to get a snapshot of the microbial landscape of a city. Results Here we postulate that honeybees may be effective collaborators in gathering samples of urban microbiota, as they forage daily within a 2-mile radius of their hive. We describe the results of a pilot study conducted with three rooftop beehives in Brooklyn, NY, where we evaluated the potential of various hive materials (honey, debris, hive swabs, bee bodies) to reveal information as to the surrounding metagenomic landscape, and where we conclude that the bee debris are the richest substrate. Based on these results, we profiled 4 additional cities through collected hive debris: Sydney, Melbourne, Venice and Tokyo. We show that each city displays a unique metagenomic profile as seen by honeybees. These profiles yield information relevant to hive health such as known bee symbionts and pathogens. Additionally, we show that this method can be used for human pathogen surveillance, with a proof-of-concept example in which we recover the majority of virulence factor genes for Rickettsia felis, a pathogen known to be responsible for “cat scratch fever”. Conclusions We show that this method yields information relevant to hive health and human health, providing a strategy to monitor environmental microbiomes on a city scale. Here we present the results of this study, and discuss them in terms of architectural implications, as well as the potential of this method for epidemic surveillance.

Funder

Bill and Melinda Gates Foundation

National Science Foundation

Alfred P. Sloan Foundation

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3