Crop rotation significantly influences the composition of soil, rhizosphere, and root microbiota in canola (Brassica napus L.)

Author:

Town Jennifer R.,Dumonceaux Tim,Tidemann Breanne,Helgason Bobbi L.

Abstract

Abstract Background Crop rotation is an agronomic practice that is known to enhance productivity and yield, and decrease pest and disease pressure. Economic and other factors have increased the frequency of certain crops, including canola, with unknown effects on the below ground microbial communities that impact plant health and performance. This study investigated the effect of 12 years of crop rotation including canola-wheat; canola-pea-barley; and unrotated canola across three geographic sites in Western Canada with diverse soil types and environmental conditions. To provide data on mature, established crop rotation strategies, root exudate profiles, soil nutrient fluxes, and bacterial and fungal microbial community profiles were determined at the flowering stage in the final two (canola) years of the 12-year rotations. Results After 12 years of rotation, nutrient fluxes were affected in the soil in an inconsistent manner, with K, NO3, Mg, Ca, P, and Fe fluxes variably impacted by rotation depending on the year and site of sampling. As expected, rotation positively influenced yield and oil content, and decreased disease pressure from Leptosphaeria and Alternaria. In two of the three sites, root exudate profiles were significantly influenced by crop rotation. Bacterial soil, root, and rhizosphere communities were less impacted by crop rotation than the fungal communities. Fungal sequences that were associated with specific rotation strategies were identified in the bulk soil, and included known fungal pathogens in the canola-only strategy. Two closely related fungal sequences identified as Olpidium brassicae were extremely abundant at all sites in both years. One of these sequences was observed uniquely at a single site and was significantly associated with monocropped canola; moreover, its abundance correlated negatively with yield in both years. Conclusions Long-term canola monoculture affected root exudate profiles and soil nutrient fluxes differently in the three geographic locations. Bacterial communities were less impacted by rotation compared to the fungal communities, which consistently exhibited changes in composition in all ecological niches at all sites, in both years. Fungal sequences identified as O. brassicae were highly abundant at all sites, one of which was strongly associated with canola monoculture. Soil management decisions should include consideration of the effects on the microbial ecosystems associated with the plants in order to inform best management practices.

Funder

Canola Agronomic Research Program

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3