Grapevine bacterial communities display compartment-specific dynamics over space and time within the Central Valley of California

Author:

Swift Joel F.,Migicovsky Zoë,Trello Grace E.,Miller Allison J.

Abstract

Abstract Background Plant organs (compartments) host distinct microbiota which shift in response to variation in both development and climate. Grapevines are woody perennial crops that are clonally propagated and cultivated across vast geographic areas, and as such, their microbial communities may also reflect site-specific influences. These site-specific influences along with microbial differences across sites compose ‘terroir’, the environmental influence on wine produced in a given region. Commercial grapevines are typically composed of a genetically distinct root (rootstock) grafted to a shoot system (scion) which adds an additional layer of complexity via genome-to-genome interactions. Results To understand spatial and temporal patterns of bacterial diversity in grafted grapevines, we used 16S rRNA amplicon sequencing to quantify soil and compartment microbiota (berries, leaves, and roots) for grafted grapevines in commercial vineyards across three counties in the Central Valley of California over two successive growing seasons. Community composition revealed compartment-specific dynamics. Roots assembled site-specific bacterial communities that reflected rootstock genotype and environment influences, whereas bacterial communities of leaves and berries displayed associations with time. Conclusions These results provide further evidence of a microbial terroir within the grapevine root systems but also reveal that the microbiota of above-ground compartments are only weakly associated with the local soil microbiome in the Central Valley of California.

Funder

National Science Foundation Plant Genome Research Program

National Science Foundation Graduate Research Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3