The methane-driven interaction network in terrestrial methane hotspots

Author:

Kaupper Thomas,Mendes Lucas W.,Poehlein Anja,Frohloff Daria,Rohrbach Stephan,Horn Marcus A.,Ho AdrianORCID

Abstract

AbstractBackgroundBiological interaction affects diverse facets of microbial life by modulating the activity, diversity, abundance, and composition of microbial communities. Aerobic methane oxidation is a community function, with emergent community traits arising from the interaction of the methane-oxidizers (methanotrophs) and non-methanotrophs. Yet little is known of the spatial and temporal organization of these interaction networks in naturally-occurring complex communities. We hypothesized that the assembled bacterial community of the interaction network in methane hotspots would converge, driven by high substrate availability that favors specific methanotrophs, and in turn influences the recruitment of non-methanotrophs. These environments would also share more co-occurring than site-specific taxa.ResultsWe applied stable isotope probing (SIP) using13C-CH4coupled to a co-occurrence network analysis to probe trophic interactions in widespread methane-emitting environments, and over time. Network analysis revealed predominantly unique co-occurring taxa from different environments, indicating distinctly co-evolved communities more strongly influenced by other parameters than high methane availability. Also, results showed a narrower network topology range over time than between environments. Co-occurrence pattern points toChthoniobacteras a relevant yet-unrecognized interacting partner particularly of the gammaproteobacterial methanotrophs, deserving future attention. In almost all instances, the networks derived from the13C-CH4incubation exhibited a less connected and complex topology than the networks derived from theunlabelledC-CH4incubations, likely attributable to the exclusion of the inactive microbial population and spurious connections; DNA-based networks (without SIP) may thus overestimate the methane-dependent network complexity.ConclusionWe demonstrated that site-specific environmental parameters more strongly shaped the co-occurrence of bacterial taxa than substrate availability. Given that members of the interactome without the capacity to oxidize methane can exert interaction-induced effects on community function, understanding the co-occurrence pattern of the methane-driven interaction network is key to elucidating community function, which goes beyond relating activity to community composition, abundances, and diversity. More generally, we provide a methodological strategy that substantiates the ecological linkages between potentially interacting microorganisms with broad applications to elucidate the role of microbial interaction in community function.

Funder

Deutsche Forschungsgemeinschaft

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3