Author:
Shi Mingzi,Song Caihong,Xie Lina,Zhang Guogang,Wei Zimin
Abstract
Abstract
Background
Understanding the functional diversity, composition, and dynamics of microbiome is critical for quality in composting. Denitrifying microbiota, possessing multiple metabolic pathways simultaneously. Denitrification-based biodegradation of aromatic metabolites has been widely applied in the bioremediation of sediments. However, role in biodegradation of denitrifying microbiota in kitchen waste composting remain unclear. In this study, microbiome and metabolome were used to comprehensively decipher the relationship of denitrifying microbiota and aromatic metabolites, and its implication in kitchen waste (KW) composting.
Results
This study was investigated by adjusting moisture content 60% as control test (CK), 70% as denitrification test (DE). In addition, one tests referred as DE + C, which received 10% of biochar to amend denitrification. Results indicated the quantities of denitrification genes narG were 1.22 × 108 copies/g in DE at the 55th day, which were significantly higher than that in CK and DE + C (P < 0.05). Similarly, the abundance of nirK gene also significantly increased in DE (P < 0.05). The relative abundance of denitrification-related microbes in DE was higher than that in CK, DE + C could weaken their abundance. Metabolomics results demonstrated that metabolites were downgraded in aromatic amino acid and catechin metabolic pathways in DE, which were identified as precursors to synthesis key product fulvic acid. The concentrations of fulvic acid dramatically decreased 21.05 mg/g in DE comparison with CK. Biochar addition alleviated the biodegradation of aromatic metabolites and reduced the utilization of fulvic acid. Integrative analyses of metabolomics and microbiome suggested that the microbiota involved in nitrite reduction pathway was vital for the biodegradation aromatic metabolites. Mantel test verified that NO3--N, moisture content, eta, environmental factors were important drivers behind the changes in the denitrifying microbiota biodegradation function.
Conclusion
The data confirm the biodegradation function of denitrifying microbiota led to the loss of core product fulvic acid in KW composting, which highlighted the adverse role and implication of denitrification for composting humification. Control of denitrification with biochar was recommended to improve composting quality.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Applied Microbiology and Biotechnology,Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献