Role in aromatic metabolites biodegradation and adverse implication of denitrifying microbiota in kitchen waste composting

Author:

Shi Mingzi,Song Caihong,Xie Lina,Zhang Guogang,Wei Zimin

Abstract

Abstract Background Understanding the functional diversity, composition, and dynamics of microbiome is critical for quality in composting. Denitrifying microbiota, possessing multiple metabolic pathways simultaneously. Denitrification-based biodegradation of aromatic metabolites has been widely applied in the bioremediation of sediments. However, role in biodegradation of denitrifying microbiota in kitchen waste composting remain unclear. In this study, microbiome and metabolome were used to comprehensively decipher the relationship of denitrifying microbiota and aromatic metabolites, and its implication in kitchen waste (KW) composting. Results This study was investigated by adjusting moisture content 60% as control test (CK), 70% as denitrification test (DE). In addition, one tests referred as DE + C, which received 10% of biochar to amend denitrification. Results indicated the quantities of denitrification genes narG were 1.22 × 108 copies/g in DE at the 55th day, which were significantly higher than that in CK and DE + C (P < 0.05). Similarly, the abundance of nirK gene also significantly increased in DE (P < 0.05). The relative abundance of denitrification-related microbes in DE was higher than that in CK, DE + C could weaken their abundance. Metabolomics results demonstrated that metabolites were downgraded in aromatic amino acid and catechin metabolic pathways in DE, which were identified as precursors to synthesis key product fulvic acid. The concentrations of fulvic acid dramatically decreased 21.05 mg/g in DE comparison with CK. Biochar addition alleviated the biodegradation of aromatic metabolites and reduced the utilization of fulvic acid. Integrative analyses of metabolomics and microbiome suggested that the microbiota involved in nitrite reduction pathway was vital for the biodegradation aromatic metabolites. Mantel test verified that NO3--N, moisture content, eta, environmental factors were important drivers behind the changes in the denitrifying microbiota biodegradation function. Conclusion The data confirm the biodegradation function of denitrifying microbiota led to the loss of core product fulvic acid in KW composting, which highlighted the adverse role and implication of denitrification for composting humification. Control of denitrification with biochar was recommended to improve composting quality.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3