Identification and analysis of KLF13 variants in patients with congenital heart disease

Author:

Li Wenjuan,Li Baolei,Li Tingting,Zhang Ergeng,Wang Qingjie,Chen Sun,Sun Kun

Abstract

Abstract Background The protein Kruppel-like factor 13 (KLF13) is a member of the KLF family and has been identified as a cardiac transcription factor that is involved in heart development. However, the relationship between KLF13 variants and CHDs in humans remains largely unknown. The present study aimed to screen the KLF13 variants in CHD patients and genetically analyze the functions of these variants. Methods KLF13 variants were sequenced in a cohort of 309 CHD patients and population-matched healthy controls (n = 200) using targeted sequencing. To investigate the effect of variants on the functional properties of the KLF13 protein, the expression and subcellular localization of the protein, as well as the transcriptional activities of downstream genes and physical interactions with other transcription factors, were assessed. Results Two heterozygous variants, c.487C > T (P163S) and c.467G > A (S156N), were identified in two out of 309 CHD patients with tricuspid valve atresia and transposition of the great arteries, respectively. No variants were found among healthy controls. The variant c.467G > A (S156N) had increased protein expression and enhanced functionality compared with the wild type, without affecting the subcellular localization. The other variant, c.487C > T (P163S), did not show any abnormalities in protein expression or subcellular localization; however, it inhibited the transcriptional activities of downstream target genes and physically interacted with TBX5, another cardiac transcription factor. Conclusion Our results show that the S156N and P163S variants may affect the transcriptional function of KLF13 and physical interaction with TBX5. These results identified KLF13 as a potential genetic risk factor for congenital heart disease.

Funder

International Cooperation and Exchange Programme

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3