Abstract
Abstract
Background
Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare.
Methods
Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed.
Results
We found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765 T > A (p.Phe589Ile)] and [c.1846A > G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix.
Conclusion
Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献