LRCH1 polymorphisms linked to delayed encephalopathy after acute carbon monoxide poisoning identified by GWAS analysis followed by Sequenom MassARRAY® validation

Author:

Gu Jiapeng,Zeng Jiao,Wang Xi,Gu Xin,Zhang Xiaoli,Zhang Ping,Zhang Fan,Han Yongkai,Han Yazhou,Zhang Hongxing,Li Wenqiang,Gu RenjunORCID

Abstract

Abstract Background We explored the association of leucine-rich repeats and calponin homology domain containing 1 (LRCH1) gene polymorphisms with genetic susceptibility to delayed encephalopathy after acute carbon monoxide poisoning (DEACMP), which might provide a theoretical basis for the pathogenesis, diagnosis, and prognosis research of DEACMP. Methods Four single nucleotide polymorphisms, rs1539177 (G/A), rs17068697 (G/A), rs9534475 (A/C), and rs2236592 (T/C), of LRCH1, selected as candidate genes through genome-wide association analysis, were genotyped in 661 patients (DEACMP group: 235 cases; ACMP group: 426 cases) using Sequenom Massarray®. The association analysis of four SNPs and LRCH1 was performed under different genetic models. Results LRCH1 polymorphisms (rs1539177, rs17068697, rs9534475) under additive and dominant genetic models were significantly associated with an increased risk of DEACMP, but no significant association under allele and recessive models was found. The LRCH1 rs2236592 polymorphism was susceptible to DEACMP only under the dominant model (TT/TC + CC, OR = 1.616, 95% CI: 1.092–2.390, P = 0.015784). In addition, the A allele gene of rs9534475 polymorphism in LRCH1 might increase the risk for DEACMP (OR = 1.273, 95% CI: 1.013–1.601, P = 0.038445). Conclusions We found a significant association between the four LRCH1 polymorphisms and DEACMP. The allelic A of rs9534475 polymorphism in LRCH1 might be a risk factor for DEACMP.

Funder

National Natural Science Foundation of China

Training plan for young excellent teachersin Colleges and Universities of Henan

Science and technology project of Xinxiang

support project for the Disciplinary group of Psychiatry and Neuroscience, Xinxiang Medical University

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3