Author:
Bettiol Esther,Carapau Daniel,Galan-Rodriguez Cristina,Ocaña-Morgner Carlos,Rodriguez Ana
Abstract
Abstract
Background
Infection with Plasmodium is the cause of malaria, a disease characterized by a high inflammatory response in the blood. Dendritic cells (DC) participate in both adaptive and innate immune responses, influencing the generation of inflammatory responses. DC can be activated through different receptors, which recognize specific molecules in microbes and induce the maturation of DC.
Methods
Using Plasmodium yoelii, a rodent malaria model, the effect of Plasmodium-infected erythrocytes on DC maturation and TLR responses have been analysed.
Results
It was found that intact erythrocytes infected with P. yoelii do not induce maturation of DC unless they are lysed, suggesting that accessibility of parasite inflammatory molecules to their receptors is a key issue in the activation of DC by P. yoelii. This activation is independent of MyD88. It was also observed that pre-incubation of DC with intact P. yoelii-infected erythrocytes inhibits the maturation response of DC to other TLR stimuli. The inhibition of maturation of DC is reversible, parasite-specific and increases with the stage of parasite development, with complete inhibition induced by schizonts (mature infected erythrocytes). Plasmodium yoelii-infected erythrocytes induce a broad inhibitory effect rendering DC non-responsive to ligands for TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9.
Conclusions
Despite the presence of inflammatory molecules within Plasmodium-infected erythrocytes, which are probably responsible for DC maturation induced by lysates, intact Plasmodium-infected erythrocytes induce a general inhibition of TLR responsiveness in DC. The observed effect on DC could play an important role in the pathology and suboptimal immune response observed during the disease. These results help to explain why immune functions are altered during malaria, and provide a system for the identification of a parasite-derived broad inhibitor of TLR-mediated signaling pathways.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献