Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I

Author:

Kümpornsin Krittikorn,Kotanan Namfon,Chobson Pornpimol,Kochakarn Theerarat,Jirawatcharadech Piyaporn,Jaru-ampornpan Peera,Yuthavong Yongyuth,Chookajorn Thanat

Abstract

Abstract Background Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. Methods Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. Results Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. Conclusions Functional assays for P. falciparum GCH1 based on enzymatic activity and genetic complementation were successfully developed. The assays in combination with a homology model characterized the enzymatic activity of P. falciparum GCH1 and the importance of its key amino acid residues. The potential to use the assay for inhibitor screening was validated by 8-oxo-GTP, a known GTP analogue inhibitor.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3