Mechanisms of protective immune responses induced by the Plasmodium falciparum circumsporozoite protein-based, self-assembling protein nanoparticle vaccine

Author:

McCoy Margaret E,Golden Hannah E,Doll Tais APF,Yang Yongkun,Kaba Stephen A,Burkhard Peter,Lanar David E

Abstract

Abstract Background A lack of defined correlates of immunity for malaria, combined with the inability to induce long-lived sterile immune responses in a human host, demonstrate a need for improved understanding of potentially protective immune mechanisms for enhanced vaccine efficacy. Protective sterile immunity (>90%) against the Plasmodium falciparum circumsporozoite protein (CSP) has been achieved using a transgenically modified Plasmodium berghei sporozoite (Tg-Pb/Pf CSP) and a self-assembling protein nanoparticle (SAPN) vaccine presenting CSP epitopes (Pf CSP-SAPN). Here, several possible mechanisms involved in the independently protective humoral and cellular responses induced following SAPN immunization are described. Methods Inbred mice were vaccinated with Pf CSP-SAPN in PBS. Serum antibodies were harvested and effects on P. falciparum sporozoites mobility and integrity were examined using phase contrast microscopy. The functionality of SAPN-induced antibodies on inhibition of sporozoite invasion and growth within primary human hepatocytes was also examined. The internal processing of SAPN by bone marrow-derived dendritic cells (BMDDC), using organelle-specific, fluorescent-tagged antibody or gold-encapsulated SAPN, was observed using confocal or electron microscopy, respectively. Results The results of this work demonstrate that Pf CSP-SAPN induces epitope-specific antibody titers, predominantly of the Th2 isotype IgG1, and that serum antibodies from PfCSP-SAPN-immunized mice appear to target P. falciparum sporozoites via the classical pathway of complement. This results in sporozoite death as indicated by cessation of motility and the circumsporozoite precipitation reaction. Moreover, Pf CSP-SAPN-induced antibodies are able to inhibit wild-type P. falciparum sporozoite invasion and growth within cultured primary human hepatocytes. In addition, the observation that Pf CSP-SAPN are processed (and presented) to the immune system by dendritic cells in a slow and continuous fashion via transporter associated with antigen processing (TAP) recruitment to the early endosome (EE), and have partially delayed processing through the endoplasmic reticulum, has the potential to induce the long-lived, effector memory CD8+ T-cells as described previously. Conclusion This paper describes the examination of humoral and cellular immune mechanisms induced by Pf CSP-SAPN vaccination which result in sterile host protection against a transgenic P. berghei malaria sporozoite expressing the P. falciparum CSP, and which significantly inhibits native P. falciparum sporozoites from invading and developing within cultured human hepatocytes. These results may indicate the type and mode of action of protective antibodies needed to control P. falciparum sporozoites from infecting humans as well as a potential mechanism of induction of protective long-lived effector memory CD8+ T-cells.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference30 articles.

1. Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL: Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science. 2011, 334: 475-480. 10.1126/science.1211548.

2. Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T, Chakravarty S, Gunasekera A, Chattopadhyay R, Li M, Stafford R, Ahumada A, Epstein JE, Sedegah M, Reyes S, Richie TL, Lyke KE, Edelman R, Laurens MB, Plowe CV, Sim BKL:Development of a metabolically active, non-replicating sporozoite vaccine to preventPlasmodium falciparummalaria.Hum Vaccin. 2010, 6: 97-106. 10.4161/hv.6.1.10396.

3. Luke TC, Hoffman SL: Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J Exp Biol. 2003, 206: 3803-3808. 10.1242/jeb.00644.

4. Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, Mandomando I, Spiessens B, Guinovart C, Espasa M, Bassat Q, Aide P, Ofori-Anyinam O, Navia M, Corachan S, Ceuppens M, Dubois MC, Demoitie MA, Dubovsky F, Menendez C, Tornieporth N, Ballou WR, Thompson R, Cohen J:Efficacy of the RTS, S/AS02A vaccine againstPlasmodium falciparuminfection and disease in young African children: randomised controlled trial.Lancet. 2004, 364: 1411-1420. 10.1016/S0140-6736(04)17223-1.

5. Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, Methogo B, Doucka Y, Flamen A, Mordmuller B, Doucka Y, Flamen A, Mordmueller B, Issifou S, Kremsner PG, Sacarlal J, Aide P, Lanaspa M, Aponte JJ, Nhamuave A, Quelhas D, Bassat Q, Mandjate S, Macete E, Alonso P, Abdulla S, Salim N, Juma O, Shomari M, Shubis K, Clinical Trials Partnership: First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011, 365: 1863-1875.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3