Towards malaria risk prediction in Afghanistan using remote sensing

Author:

Adimi Farida,Soebiyanto Radina P,Safi Najibullah,Kiang Richard

Abstract

Abstract Background Malaria is a significant public health concern in Afghanistan. Currently, approximately 60% of the population, or nearly 14 million people, live in a malaria-endemic area. Afghanistan's diverse landscape and terrain contributes to the heterogeneous malaria prevalence across the country. Understanding the role of environmental variables on malaria transmission can further the effort for malaria control programme. Methods Provincial malaria epidemiological data (2004-2007) collected by the health posts in 23 provinces were used in conjunction with space-borne observations from NASA satellites. Specifically, the environmental variables, including precipitation, temperature and vegetation index measured by the Tropical Rainfall Measuring Mission and the Moderate Resolution Imaging Spectoradiometer, were used. Regression techniques were employed to model malaria cases as a function of environmental predictors. The resulting model was used for predicting malaria risks in Afghanistan. The entire time series except the last 6 months is used for training, and the last 6-month data is used for prediction and validation. Results Vegetation index, in general, is the strongest predictor, reflecting the fact that irrigation is the main factor that promotes malaria transmission in Afghanistan. Surface temperature is the second strongest predictor. Precipitation is not shown as a significant predictor, as it may not directly lead to higher larval population. Autoregressiveness of the malaria epidemiological data is apparent from the analysis. The malaria time series are modelled well, with provincial average R2 of 0.845. Although the R2 for prediction has larger variation, the total 6-month cases prediction is only 8.9% higher than the actual cases. Conclusions The provincial monthly malaria cases can be modelled and predicted using satellite-measured environmental parameters with reasonable accuracy. The Third Strategic Approach of the WHO EMRO Malaria Control and Elimination Plan is aimed to develop a cost-effective surveillance system that includes forecasting, early warning and detection. The predictive and early warning capabilities shown in this paper support this strategy.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference18 articles.

1. Faulde MK, Hoffmann R, Fazilat KM, Hoerauf A: Malaria reemergence in northern Afghanistan. Emer Infect Dis. 2007, 13: 1402-1404.

2. Leslie T, Mohammed N, Omar H, Rasheed HU, Vorst van der F, Sediqi AM: Malaria sentinel surveillance in Afghanistan. Afghanistan Annual Malaria Journal. 2008, 114-128.

3. Youssef R, Safi N, Hemeed H, Sediqi W, Naser JA, Butt W: National malaria indicators assessment, 2008. Afghanistan Annual Malaria Journal. 2008, 37-49.

4. WHO: World Malaria Report 2008. 2008, vol. WHO/HTM/GMP/2008.1

5. Kolaczinski J, Graham K, Fahim A, Brooker S, Rowland M: Malaria control in Afghanistan: progress and challenges. Lancet. 2005, 365: 1506-1512. 10.1016/S0140-6736(05)66423-9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3