Using search queries for malaria surveillance, Thailand

Author:

Ocampo Alex J,Chunara Rumi,Brownstein John S

Abstract

Abstract Background Internet search query trends have been shown to correlate with incidence trends for select infectious diseases and countries. Herein, the first use of Google search queries for malaria surveillance is investigated. The research focuses on Thailand where real-time malaria surveillance is crucial as malaria is re-emerging and developing resistance to pharmaceuticals in the region. Methods Official Thai malaria case data was acquired from the World Health Organization (WHO) from 2005 to 2009. Using Google correlate, an openly available online tool, and by surveying Thai physicians, search queries potentially related to malaria prevalence were identified. Four linear regression models were built from different sub-sets of malaria-related queries to be used in future predictions. The models’ accuracies were evaluated by their ability to predict the malaria outbreak in 2009, their correlation with the entire available malaria case data, and by Akaike information criterion (AIC). Results Each model captured the bulk of the variability in officially reported malaria incidence. Correlation in the validation set ranged from 0.75 to 0.92 and AIC values ranged from 808 to 586 for the models. While models using malaria-related and general health terms were successful, one model using only microscopy-related terms obtained equally high correlations to malaria case data trends. The model built strictly of queries provided by Thai physicians was the only one that consistently captured the well-documented second seasonal malaria peak in Thailand. Conclusions Models built from Google search queries were able to adequately estimate malaria activity trends in Thailand, from 2005–2010, according to official malaria case counts reported by WHO. While presenting their own limitations, these search queries may be valid real-time indicators of malaria incidence in the population, as correlations were on par with those of related studies for other infectious diseases. Additionally, this methodology provides a cost-effective description of malaria prevalence that can act as a complement to traditional public health surveillance. This and future studies will continue to identify ways to leverage web-based data to improve public health.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference24 articles.

1. WHO: World Malaria Report 2011. 2011, Geneva: World Health Organization

2. Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M: Operational strategies to achieve and maintain malaria elimination. Lancet. 2010, 376: 1592-1603. 10.1016/S0140-6736(10)61269-X.

3. World Health Organization: Malaria fact sheet. 2011,http://www.who.int/malaria/world_malaria_report_2011/WMR2011_factsheet.pdf,

4. Brown K: A new model for forecasting malaria epidemics is developed by researchers from Ethiopia and Norway.http://sciencenordic.com/forecasting-malaria,

5. Eysenbach G: Infodemiology: tracking flu-related searches on the web for syndromic surveillance. Proc AMIA Annu Fall Symp. 2006, 244: 248-

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3