Author:
Helinski Michelle EH,Parker Andrew G,Knols Bart GJ
Abstract
Abstract
Background
In the context of the Sterile Insect Technique (SIT), radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae) was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined.
Methods
Pupae were irradiated shortly before emergence (at 22–26 hrs of age), and adults <24 hrs post emergence. Doses tested ranged between 0 and 100 Gy. The effects of irradiation on adult emergence, male survival, induced sterility and insemination capability were evaluated. Emergence and insemination data were analysed using independent t-tests against the control. Correlation analyses were performed for insemination rate and dose and insemination and fecundity. Male survival was analysed using Kaplan-Meier survival analyses. Finally, the calculated residual fertility values were inverse-normal transformed and linear regression analyses performed.
Results
Irradiation of pupae, for all doses tested, had no effect on adult emergence. Survival curves of males irradiated as pupae or adults were similar or even slightly higher than non-irradiated males. Overall, adults appeared to be slightly more susceptible to irradiation, although no significant differences for individual doses were observed. In the pupal stage, a significant negative correlation was found between insemination and dose, but the correlation-coefficient was associated with less than 25% of the total variation. A review of the literature indicated that An. arabiensis is more radiation resistant than other anopheline mosquitoes.
Conclusion
The optimal dose for male insects to be released in an SIT programme depends on their level of sterility and competitiveness. The use of semi-sterilizing doses to produce more competitive insects is discussed. The most convenient developmental stage for mosquito irradiation on a mass-scale are pupae, but pupal irradiation resulted in a lower insemination rate at the highest dose compared to adult irradiation. On the basis of this study, a suitable dose range that includes semi-sterilizing doses is identified to initiate competitiveness experiments for males irradiated at both developmental stages.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference37 articles.
1. UNICEF, WHO/RBM: World Malaria Report. WHO/HTM/MAL/2005.1102. 2005
2. Dyck A, Hendrichs J, Robinson AS: The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. 2005, Heidelberg, Germany: Springer
3. Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355. 10.1016/S1471-4922(03)00144-2.
4. Dame DA, Lowe RE, Williamson DL: Assessment of Released Sterile Anopheles albimanus and Glossina morsitans morsitans. Cytogenetics and genetics of vectors. Edited by: Kitzmiller JB, Kanda T. 1981, Amsterdam, The Netherlands: Elsevier Biomedical, 231-248.
5. IAEA: Development of the Sterile Insect Technique for mosquitoes. 2006, [http://www.iaea.org/programmes/naal/agri/index.htm]
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献