Author:
Ghosh Soumita,Sengupta Arjun,Sharma Shobhona,Sonawat Haripalsingh M
Abstract
Abstract
Background
Cerebral malaria is a clinical manifestation of Plasmodium falciparum infection. Although brain damage is the predominant pathophysiological complication of cerebral malaria (CM), respiratory distress, acute lung injury, hydrothorax/pleural effusion are also observed in several cases. Immunological parameters have been assessed in pleural fluid in murine models; however there are no reports of characterization of metabolites present in pleural effusion.
Methods
1H NMR of the sera and the pleural effusion of cerebral malaria infected mice were analyzed using principal component analysis, orthogonal partial least square analysis, multiway principal component analysis, and multivariate curve resolution.
Results
It has been observed that there was 100% occurrence of pleural effusion (PE) in the mice affected with CM, as opposed to those are non-cerebral and succumbing to hyperparasitaemia (NCM/HP). An analysis of 1H NMR and SDS-PAGE profile of PE and serum samples of each of the CM mice exhibited a similar profile in terms of constituents. Multivariate analysis on these two classes of biofluids was performed and significant differences were detected in concentrations of metabolites. Glucose, creatine and glutamine contents were high in the PE and lipids being high in the sera. Multivariate curve resolution between sera and pleural effusion showed that changes in PE co-varied with that of serum in CM mice. The increase of glucose in PE is negatively correlated to the glucose in serum in CM as obtained from the result of multiway principal component analysis.
Conclusions
This study reports for the first time, the characterization of metabolites in pleural effusion formed during murine cerebral malaria. The study indicates that the origin of PE metabolites in murine CM may be the serum. The loss of the components like glucose, glutamine and creatine into the PE may worsen the situation of patients, in conjunction with the enhanced glycolysis, glutaminolysis and increased activity of creatine phophokinase which are already reported characteristic pathophysiological features of malaria.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference50 articles.
1. International Federation of Red Cross and Red Crescent Societies. [http://www.ifrc.org/en/what-we-do/health/diseases/malaria--success-through-partnership/]
2. Haldar KM, Milner DA, Taylor TE: Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu Rev Pathol. 2007, 2: 217-249. 10.1146/annurev.pathol.2.010506.091913.
3. Prudencio RA, Mota MM: The silent path to thousand of merozoites: the Plasmodium liver stage. Nat Rev Microbiol. 2006, 4: 849-856. 10.1038/nrmicro1529.
4. Areekul CK, Cheeramakara C, Wilairatana P, Charoenlarp P: Persistently elevated serum transcobalamin II in a patient with cerebral malaria and typhus infections. J Med Assoc Thai. 1995, 78: 48-52.
5. White VA, Lewallen S, Beare NAV, Molyneux ME, Taylor TE: Retinal pathology of pediatric cerebral malaria in Malawi. Plos One. 2009, 4: e4317-10.1371/journal.pone.0004317.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献