Author:
Kikankie Christophe K,Brooke Basil D,Knols Bart GJ,Koekemoer Lizette L,Farenhorst Marit,Hunt Richard H,Thomas Matthew B,Coetzee Maureen
Abstract
Abstract
Background
Control of the major African malaria vector species continues to rely extensively on the application of residual insecticides through indoor house spraying or bed net impregnation. Insecticide resistance is undermining the sustainability of these control strategies. Alternatives to the currently available conventional chemical insecticides are, therefore, urgently needed. Use of fungal pathogens as biopesticides is one such possibility. However, one of the challenges to the approach is the potential influence of varied environmental conditions and target species that could affect the efficacy of a biological 'active ingredient'. An initial investigation into this was carried out to assess the susceptibility of insecticide-susceptible and resistant laboratory strains and wild-collected Anopheles arabiensis mosquitoes to infection with the fungus Beauveria bassiana under two different laboratory temperature regimes.
Methods
Insecticide susceptibility to all four classes of insecticides recommended by WHO for vector control was tested on laboratory and wild-caught An. arabiensis, using standard WHO bioassay protocols. Mosquito susceptibility to fungus infection was tested using dry spores of B. bassiana under two temperature regimes (21 ± 1°C or 25 ± 2°C) representative of indoor conditions observed in western Kenya. Cox regression analysis was used to assess the effect of fungal infection on mosquito survival and the effect of insecticide resistance status and temperature on mortality rates following fungus infection.
Results
Survival data showed no relationship between insecticide susceptibility and susceptibility to B. bassiana. All tested colonies showed complete susceptibility to fungal infection despite some showing high resistance levels to chemical insecticides. There was, however, a difference in fungus-induced mortality rates between temperature treatments with virulence significantly higher at 25°C than 21°C. Even so, because malaria parasite development is also known to slow as temperatures fall, expected reductions in malaria transmission potential due to fungal infection under the cooler conditions would still be high.
Conclusions
These results provide evidence that the entomopathogenic fungus B. bassiana has potential for use as an alternative vector control tool against insecticide-resistant mosquitoes under conditions typical of indoor resting environments. Nonetheless, the observed variation in effective virulence reveals the need for further study to optimize selection of isolates, dose and use strategy in different eco-epidemiological settings.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference60 articles.
1. World Health Organization: World malaria report. 2008, Geneva, Switzerland: WHO
2. Hemingway J, Ranson H: Insecticide resistance in insect vectors of human disease. Ann Rev Entomol. 2000, 45: 371-391. 10.1146/annurev.ento.45.1.371.
3. Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M: Anopheles funestus is resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000, 14: 181-189. 10.1046/j.1365-2915.2000.00234.x.
4. Coetzee M, Horne DWK, Brooke BD, Hunt RH: DDT, dieldrin and pyrethroid resistance in African malaria vector mosquitoes: an historical review and implications for future malaria control in southern Africa. South Afr J Sci. 1999, 95: 215-218.
5. Etang J, Manga L, Chandre F, Guillet P, Fondjo E, Mimpfoundi R, Toto JC, Fontenille D: Insecticide susceptibility status of Anopheles gambiae s.l . (Diptera: Culicidae) in the Republic of Cameroon. J Med Entomol. 2003, 40: 491-497. 10.1603/0022-2585-40.4.491.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献