Author:
Yamada Hanano,Benedict Mark Q,Malcolm Colin A,Oliva Clelia F,Soliban Sharon M,Gilles Jeremie RL
Abstract
Abstract
Background
The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of Anopheles arabiensis was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults.
Methods
For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a 60Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated.
Results
ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively
Conclusion
The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference44 articles.
1. Knipling EF: Sterile-male method of population control. Science. 1959, 130: 902-904. 10.1126/science.130.3380.902.
2. Knipling EF, Laven H, Craig GB, Pal R, Smith CN, Brown AWA: Genetic control of insects of public health importance. Bull World Health Organ. 1968, 38: 421-438.
3. Dyck VA, Hendrichs JP, Robinson AS: The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. 2005, Springer, Dordrecht
4. Alphey L, Benedict MQ, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL: Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010, 10: 295-311. 10.1089/vbz.2009.0014.
5. Lofgren CS, Dame DA, Breeland SG, Weidhaas DE, Jeffery GM, Kaiser R, Ford HR, Boston MD, Baldwin KF: Release of chemosterilized males for the control ofAnopheles albimanusin El Salvador III. Field methods and population control. Am J Trop Med Hyg. 1974, 23: 288-297.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献