Author:
Senga Edward L,Harper Gregory,Koshy Gibby,Kazembe Peter N,Brabin Bernard J
Abstract
Abstract
Background
Nutritional iron deficiency may limit iron availability to the malaria parasite reducing infection risk, and/or impair host immunity thereby increasing this risk. In pregnant women, there is evidence of an adverse effect with iron supplementation, but the few reported studies are strongly confounded.
Methods
A case control study in pregnant Malawian women was undertaken in Chikhwawa southern Malawi in order to describe iron status in relation to placental malaria controlling for several confounding factors. Pregnancy characteristics were obtained and a blood sample at delivery. A full blood count was performed and serum ferritin and transferrin receptor quantified by enzyme-linked immunoassay. DNA analysis was used to identify genetic polymorphisms for ABO phenotype, hemoglobin HbS, and glucose -6 phosphate dehydrogenase deficiency. Placental tissue was obtained and malaria histology classified as active, past or no malaria infection.
Results
112 cases with placental malaria were identified and 110 women with no evidence of placental infection. Iron deficiency was less frequent in women with placental Plasmodium falciparum infection. In those with acute, chronic or past placental infections the odds ratio for iron deficiency was 0.4, 95% CI 0.2-0.8, p = 0.01; for acute and chronic infections 0.4, 0.2-0.8, p = 0.006; for acute infection 0.3, 0.1-0.7, p = 0.001. The association was greater in multigravidae.
Conclusion
Women with either acute, or acute and chronic placental malaria were less likely to have iron deficiency than women without placental malaria infection There is a priority to establish if reversing iron deficiency through iron supplementation programs either prior to or during pregnancy enhances malaria risk.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference17 articles.
1. Murray MJ, Murray AB, Murray MB, Murray CJ: The adverse effect of iron repletion on the course of certain infections. Br Med J. 1978, 2: 1113-1115. 10.1136/bmj.2.6145.1113.
2. Wander K, Shell-Duncan B, McDade TW: Evaluation of iron deficiency as a nutritional adaptation to infectious disease: an evolutionary medicine perspective. Am J Hum Biol. 2009, 21: 172-179. 10.1002/ajhb.20839.
3. Ojukwu JU, Okebe JU, Yahav D, Paul M: Oral iron supplementation for preventing or treating anaemia among children in malaria-endemic areas. Cochrane Database Syst Rev. 2009, 3: CD006589-
4. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO: Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010, 7: e1000221-10.1371/journal.pmed.1000221.
5. World Health Organization: Weekly iron-folic acid supplementations (WIFS) in women of reproductive age: its role in promoting optimal maternal and child health. 2009, Position Statement. Geneva, WHO, [http://www.who.int/nutrition/publications/micronutrients/weekly_iron_folicacid.pdf]
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献