Using CF11 cellulose columns to inexpensively and effectively remove human DNA from Plasmodium falciparum-infected whole blood samples

Author:

Venkatesan Meera,Amaratunga Chanaki,Campino Susana,Auburn Sarah,Koch Oliver,Lim Pharath,Uk Sambunny,Socheat Duong,Kwiatkowski Dominic P,Fairhurst Rick M,Plowe Christopher V

Abstract

Abstract Background Genome and transcriptome studies of Plasmodium nucleic acids obtained from parasitized whole blood are greatly improved by depletion of human DNA or enrichment of parasite DNA prior to next-generation sequencing and microarray hybridization. The most effective method currently used is a two-step procedure to deplete leukocytes: centrifugation using density gradient media followed by filtration through expensive, commercially available columns. This method is not easily implemented in field studies that collect hundreds of samples and simultaneously process samples for multiple laboratory analyses. Inexpensive syringes, hand-packed with CF11 cellulose powder, were recently shown to improve ex vivo cultivation of Plasmodium vivax obtained from parasitized whole blood. This study was undertaken to determine whether CF11 columns could be adapted to isolate Plasmodium falciparum DNA from parasitized whole blood and achieve current quantity and purity requirements for Illumina sequencing. Methods The CF11 procedure was compared with the current two-step standard of leukocyte depletion using parasitized red blood cells cultured in vitro and parasitized blood obtained ex vivo from Cambodian patients with malaria. Procedural variations in centrifugation and column size were tested, along with a range of blood volumes and parasite densities. Results CF11 filtration reliably produces 500 nanograms of DNA with less than 50% human DNA contamination, which is comparable to that obtained by the two-step method and falls within the current quality control requirements for Illumina sequencing. In addition, a centrifuge-free version of the CF11 filtration method to isolate P. falciparum DNA at remote and minimally equipped field sites in malaria-endemic areas was validated. Conclusions CF11 filtration is a cost-effective, scalable, one-step approach to remove human DNA from P. falciparum-infected whole blood samples.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference13 articles.

1. Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, Yi P, Mayxay M, Chotivanich K, Liong KY, Russel B, Socheat D, Newton PN, Day NP, White NJ, Preiser PR, Nosten F, Dondorp AM, Bozdech Z: Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011, 12: 391-10.1186/1471-2164-12-391.

2. Dharia NV, Bright AT, Westenberger SJ, Barnes SW, Batalov S, Kuhen K, Borboa R, Federe GC, McClean CM, Vinetz JM, Neyra V, Llanos-Cuentas A, Barnwell JW, Walker JR, Winzeler EA: Whole-genome sequencing and microarray analysis of ex vivo Plasmodium viva reveal selective pressure on putative drug resistance genes. Proc Natl Acad Sci USA. 2010, 107: 20045-20050. 10.1073/pnas.1003776107.

3. Auburn S, Campino S, Clark TG, Djimde AA, Zongo I, Pinches R, Manske M, Mangano V, Alcock D, Anastasi E, Maslen G, Macinnis B, Rockett K, Modiano D, Newbold CI, Doumbo OK, Ouédraogo JB, Kwiatkowski DP: An effective method to purify Plasmodium falciparu DNA directly from clinical blood samples for whole genome high-throughput sequencing. PLoS One. 2011, 6: e22213-10.1371/journal.pone.0022213.

4. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C: Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009, 27: 182-189. 10.1038/nbt.1523.

5. Melnikov A, Galinsky K, Rogov P, Fennell T, Tyne DV, Russ C, Daniels R, Barnes KG, Bochicchio J, Ndiaye D, Sene PD, Wirth DF, Nusbaum C, Volkman SK, Birren BW, Gnirke A, Neafsey DE: Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol. 2011, 12: R73-10.1186/gb-2011-12-8-r73.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3