Organization of Plasmodium falciparum spliceosomal core complex and role of arginine methylation in its assembly
-
Published:2013-09-18
Issue:1
Volume:12
Page:
-
ISSN:1475-2875
-
Container-title:Malaria Journal
-
language:en
-
Short-container-title:Malar J
Author:
Hossain Manzar,Sharma Shweta,Korde Reshma,Kanodia Shivani,Chugh Monika,Rawat Khushboo,Malhotra Pawan
Abstract
Abstract
Background
Splicing and alternate splicing are the two key biological processes that result in the generation of diverse transcript and protein isoforms in Plasmodium falciparum as well as in other eukaryotic organisms. Not much is known about the organization of splicing machinery and mechanisms in human malaria parasite. Present study reports the organization and assembly of Plasmodium spliceosome Sm core complex.
Methods
Presence of all the seven Plasmodium Sm-like proteins in the intra-erythrocytic stages was assessed based on the protein(s) expression analysis using immuno-localization and western blotting. Localization/co-localization studies were performed by immunofluorescence analysis on thin parasite smear using laser scanning confocal microscope. Interaction studies were carried out using yeast two-hybrid analysis and validated by in vitro pull-down assays. PfPRMT5 (arginine methyl transferase) and PfSmD1 interaction analysis was performed by pull-down assays and the interacting proteins were identified by MALDI-TOF spectrometry.
Results
PfSm proteins are expressed at asexual blood stages of the parasite and show nucleo-cytoplasmic localization. Protein-protein interaction studies showed that PfSm proteins form a heptameric complex, typical of spliceosome core complex as shown in humans. Interaction of PfSMN (survival of motor neuron, tudor domain containing protein) or PfTu-TSN (Tudor domain of Tudor Staphylococcal nuclease) with PfSmD1 proteins was found to be methylation dependent. Co-localization by immunofluorescence and co-immunoprecipitation studies suggested an association between PfPRMT5 and PfSmD1, indicating the role of arginine methylation in assembly of Plasmodium spliceosome complex.
Conclusions
Plasmodium Sm-like proteins form a heptameric ring-like structure, although the arrangement of PfSm proteins slightly differs from human splicing machinery. The data shows the interaction of PfSMN with PfSmD1 and this interaction is found to be methylation dependent. PfPRMT5 probably exists as a part of methylosome complex that may function in the cytoplasmic assembly of Sm proteins at asexual blood stages of P. falciparum.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference57 articles.
1. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419: 498-511. 10.1038/nature01097. 2. Iriko H, Jin L, Kaneko O, Takeo S, Han ET, Tachibana M, Otsuki H, Torii M, Tsuboi T: A small-scale systematic analysis of alternative splicing in Plasmodium falciparum. Parasitol Int. 2009, 58: 196-199. 10.1016/j.parint.2009.02.002. 3. Bessonov S, Anokhina M, Will CL, Urlaub H, Luhrmann R: Isolation of an active step I spliceosome and composition of its RNP core. Nature. 2008, 452: 846-U843. 10.1038/nature06842. 4. Kiss T: Biogenesis of small nuclear RNPs. J Cell Sci. 2004, 117 (Pt 25): 5949-5951. 5. Neuenkirchen N, Chari A, Fischer U: Deciphering the assembly pathway of Sm-class U snRNPs. FEBS Lett. 2008, 582: 1997-2003. 10.1016/j.febslet.2008.03.009.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|