A rapid and scalable density gradient purification method for Plasmodium sporozoites
-
Published:2012-12
Issue:1
Volume:11
Page:
-
ISSN:1475-2875
-
Container-title:Malaria Journal
-
language:en
-
Short-container-title:Malar J
Author:
Kennedy Mark,Fishbaugher Matthew E,Vaughan Ashley M,Patrapuvich Rapatbhorn,Boonhok Rachasak,Yimamnuaychok Narathatai,Rezakhani Nastaran,Metzger Peter,Ponpuak Marisa,Sattabongkot Jetsumon,Kappe Stefan H,Hume Jen CC,Lindner Scott E
Abstract
Abstract
Background
Malaria remains a major human health problem, with no licensed vaccine currently available. Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. Investigations of the malaria sporozoite are, therefore, of clear medical importance. However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes.
Methods
Here is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants.
Results
This method provides clear advantages over previous approaches: it is rapid, requires no serum components, and can be scaled to purify >107 sporozoites with minimal operator involvement. Moreover, it can be effectively applied to both human (Plasmodium falciparum, Plasmodium vivax) and rodent (Plasmodium yoelii) infective species with excellent recovery rates.
Conclusions
This novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference27 articles.
1. Lindner SE, Miller JL, Kappe SH: Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell Microbiol. 2012, 14: 316-324. 10.1111/j.1462-5822.2011.01734.x. 2. Sacci JB, Alam U, Douglas D, Lewis J, Tyrrell DL, Azad AF, Kneteman NM: Plasmodium falciparum infection and exoerythrocytic development in mice with chimeric human livers. Int J Parasitol. 2006, 36: 353-360. 10.1016/j.ijpara.2005.10.014. 3. Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A, Camargo N, Bial J, Ploss A, Kappe SHI: Complete Plasmodium falciparum liver stage development in liver-chimeric mice. J Clin Invest. 2012, in press 4. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA: Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature. 2002, 419: 512-519. 10.1038/nature01099. 5. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ: A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002, 419: 520-526. 10.1038/nature01107.
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|