Genetic diversity of Plasmodium falciparum among school-aged children from the Man region, western Côte d’Ivoire
-
Published:2013-11-15
Issue:1
Volume:12
Page:
-
ISSN:1475-2875
-
Container-title:Malaria Journal
-
language:en
-
Short-container-title:Malar J
Author:
Mara Sarah E,Silué Kigbafori D,Raso Giovanna,N’Guetta Simon P,N’Goran Eliézer K,Tanner Marcel,Utzinger Jürg,Ding Xavier C
Abstract
Abstract
Background
The genetic diversity of Plasmodium falciparum allows the molecular discrimination of otherwise microscopically identical parasites and the identification of individual clones in multiple infections. The study reported here investigated the P. falciparum multiplicity of infection (MOI) and genetic diversity among school-aged children in the Man region, western Côte d’Ivoire.
Methods
Blood samples from 292 children aged seven to 15 years were collected in four nearby villages located at altitudes ranging from 340 to 883 m above sea level. Giemsa-stained thick and thin blood films were prepared and examined under a microscope for P. falciparum prevalence and parasitaemia. MOI and genetic diversity of the parasite populations were investigated using msp2 typing by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
Results
Plasmodium falciparum prevalence and parasitaemia were both found to be significantly lower in the highest altitude village. Genotyping of the isolates revealed 25 potentially new msp2 alleles. MOI varied significantly across villages but did not correlate with altitude nor children’s age, and only to a limited extent with parasitaemia. An analysis of molecular variance (AMOVA) indicated that a small, but close to statistical significance (p = 0.07), fraction of variance occurs specifically between villages of low and high altitudes.
Conclusions
Higher altitude was associated with lower prevalence of P. falciparum but not with reduced MOI, suggesting that, in this setting, MOI is not a good proxy for transmission. The evidence for partially parted parasite populations suggests the existence of local geographical barriers that should be taken into account when deploying anti-malarial interventions.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference48 articles.
1. Day KP, Koella JC, Nee S, Gupta S, Read AF: Population genetics and dynamics of plasmodium falciparum: an ecological view. Parasitology. 1992, 104 (Suppl): S35-S52. 2. Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, O’Brien J, Djimdé A, Doumbo O, Zongo I, Ouédraogo JB, Michon P, Mueller I, Siba P, Nzila A, Borrmann S, Kiara SM, Marsh K, Jiang H, Su X-Z, Amaratunga C, Fairhurst R, Socheat D, Nosten F, Imwong M, White NJ, Sanders M, Anastasi E, Alcock D, Drury E: Analysis of plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012, 487: 375-379. 10.1038/nature11174. 3. Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP: Microsatellite markers reveal a spectrum of population structures in the malaria parasite plasmodium falciparum. Mol Biol Evol. 2000, 17: 1467-1482. 10.1093/oxfordjournals.molbev.a026247. 4. Mobegi VA, Loua KM, Ahouidi AD, Satoguina J, Nwakanma DC, Amambua-Ngwa A, Conway DJ: Population genetic structure of plasmodium falciparum across a region of diverse endemicity in West Africa. Malar J. 2012, 11: 223-10.1186/1475-2875-11-223. 5. Felger I, Genton B, Smith T, Tanner M, Beck H-P: Molecular monitoring in malaria vaccine trials. Trends Parasitol. 2003, 19: 60-63. 10.1016/S1471-4922(02)00066-1.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|