Evaluation of bioluminescence-based assays of anti-malarial drug activity
-
Published:2013-02-08
Issue:1
Volume:12
Page:
-
ISSN:1475-2875
-
Container-title:Malaria Journal
-
language:en
-
Short-container-title:Malar J
Author:
Hasenkamp Sandra,Sidaway Adam,Devine Oliver,Roye Richard,Horrocks Paul
Abstract
Abstract
Background
Transgenic Plasmodium falciparum expressing luciferase offers an attractive bioluminescence-based assay platform for the investigation of the pharmacological properties of anti-malarial drugs. Here a side-by-side comparison of bioluminescence and fluorescence-based assays, utilizing a luciferase reporter cassette that confers a strong temporal pattern of luciferase expression during the S-phase of intraerythrocytic development, is reported.
Methods
Key assay parameters for a range of commercially available luminogenic substrates are determined and compared to those measured using a Malaria Sybr Green I fluorescence assay. In addition, the short-term temporal effects of anti-malarial compounds are evaluated using both bioluminescent and fluorescent assay platforms.
Results
The Z’, % coefficient of variation and 50% inhibition concentrations are essentially the same for bioluminescent and fluorescent assays in transgenic parasites generated in both chloroquine-sensitive and -resistant genetic backgrounds. Bioluminescent assays, irrespective of the luminogenic agent employed, do, however, offer significantly enhanced signal-to-noise ratios. Moreover, the bioluminescent assay is more dynamic in terms of determining temporal effects immediately following drug perturbation.
Conclusion
This study suggests that opportunities for bioluminescence-based assays lie not in the measurement of 50% inhibition concentrations, where the cheaper fluorescence assay performs excellently and is not restricted by the need to genetically modify the parasite clone under investigation. Instead, assays that use the dynamic response of the luciferase reporter for semi-automated screening of additional pharmacological properties, such as relative rate-of-kill and lethal dose estimation, are a more attractive development opportunity.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference26 articles.
1. Burrows JN, Leroy D, Lotharius J, Waterson D: Challenges in antimalarial drug discovery. Future Med Chem. 2011, 3: 1401-1412. 10.4155/fmc.11.91. 2. Grimberg BT, Mehlotra RK: Expanding the antimalarial drug arsenal-now, but how?. Pharmaceuticals (Basel). 2011, 4: 681-712. 3. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DV, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF: Thousands of chemical starting points for antimalarial lead identification. Nature. 2010, 465: 305-310. 10.1038/nature09107. 4. Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, Smithson DC, Connelly M, Clark J, Zhu F, Jiménez-Díaz MB, Martinez MS, Wilson EB, Tripathi AK, Gut J, Sharlow ER, Bathurst I, El Mazouni F, Fowble JW, Forquer I, McGinley PL, Castro S, Angulo-Barturen I, Ferrer S, Rosenthal PJ, Derisi JL, Sullivan DJ, Lazo JS, Roos DS, Riscoe MK: Chemical genetics of Plasmodium falciparum. Nature. 2010, 465: 311-315. 10.1038/nature09099. 5. Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, Nagle A, Adrian F, Matzen JT, Anderson P, Nam TG, Gray NS, Chatterjee A, Janes J, Yan SF, Trager R, Caldwell JS, Schultz PG, Zhou Y, Winzeler EA: In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci USA. 2008, 105: 9059-9064. 10.1073/pnas.0802982105.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|