Author:
Gray Emilie M,Rocca Kyle AC,Costantini Carlo,Besansky Nora J
Abstract
Abstract
Background
Anopheles gambiae, the principal vector of malignant malaria in Africa, occupies a wide range of habitats. Environmental flexibility may be conferred by a number of chromosomal inversions non-randomly associated with aridity, including 2La. The purpose of this study was to determine the physiological mechanisms associated with the 2La inversion that may result in the preferential survival of its carriers in hygrically-stressful environments.
Methods
Two homokaryotypic populations of A. gambiae (inverted 2La and standard 2L+a) were created from a parental laboratory colony polymorphic for 2La and standard for all other known inversions. Desiccation resistance, water, energy and dry mass of adult females of both populations were compared at several ages and following acclimation to a more arid environment.
Results
Females carrying 2La were significantly more resistant to desiccation than 2L+a females at emergence and four days post-emergence, for different reasons. Teneral 2La females had lower rates of water loss than their 2L+a counterparts, while at four days, 2La females had higher initial water content. No differences in desiccation resistance were found at eight days, with or without acclimation. However, acclimation resulted in both populations significantly reducing their rates of water loss and increasing their desiccation resistance. Acclimation had contrasting effects on the body characteristics of the two populations: 2La females boosted their glycogen stores and decreased lipids, whereas 2La females did the contrary.
Conclusion
Variation in rates of water loss and response to acclimation are associated with alternative arrangements of the 2La inversion. Understanding the mechanisms underlying these traits will help explain how inversion polymorphisms permit exploitation of a heterogeneous environment by this disease vector.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference48 articles.
1. Sutherst R, Maywald G, Skarratt D: Predicting insect distributions in a changed climate. Insects in a changing environment. Edited by: Harrington R, Stork N. 1995, London: Academic Press, 59-91.
2. Lindsay SW, Parson L, Thomas CJ: Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc Biol Sci. 1998, 265: 847-854. 10.1098/rspb.1998.0369.
3. Snow RW, Omumbo JA: Malaria. Disease and mortality in Sub-Saharan Africa. Edited by: Jamison DT, Feachem RJ, Makgoba MW, Bos ER, Baingana FK, Hofman KJ, Rogo KO. 2006, Washington, D.C.: World Bank, 195-213. 2
4. Powell JR, Petrarca V, della Torre A, Caccone A, Coluzzi M: Population structure, speciation, and introgression in the Anopheles gambiae complex. Parassitologia. 1999, 41: 101-113.
5. Coluzzi M, Sabatini A, Petrarca V, Di Deco MA: Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979, 73: 483-497. 10.1016/0035-9203(79)90036-1.
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献