Author:
Grover-Kopec Emily,Kawano Mika,Klaver Robert W,Blumenthal Benno,Ceccato Pietro,Connor Stephen J
Abstract
Abstract
Periodic epidemics of malaria are a major public health problem for many sub-Saharan African countries. Populations in epidemic prone areas have a poorly developed immunity to malaria and the disease remains life threatening to all age groups. The impact of epidemics could be minimized by prediction and improved prevention through timely vector control and deployment of appropriate drugs. Malaria Early Warning Systems are advocated as a means of improving the opportunity for preparedness and timely response.
Rainfall is one of the major factors triggering epidemics in warm semi-arid and desert-fringe areas. Explosive epidemics often occur in these regions after excessive rains and, where these follow periods of drought and poor food security, can be especially severe. Consequently, rainfall monitoring forms one of the essential elements for the development of integrated Malaria Early Warning Systems for sub-Saharan Africa, as outlined by the World Health Organization.
The Roll Back Malaria Technical Resource Network on Prevention and Control of Epidemics recommended that a simple indicator of changes in epidemic risk in regions of marginal transmission, consisting primarily of rainfall anomaly maps, could provide immediate benefit to early warning efforts. In response to these recommendations, the Famine Early Warning Systems Network produced maps that combine information about dekadal rainfall anomalies, and epidemic malaria risk, available via their Africa Data Dissemination Service. These maps were later made available in a format that is directly compatible with HealthMapper, the mapping and surveillance software developed by the WHO's Communicable Disease Surveillance and Response Department. A new monitoring interface has recently been developed at the International Research Institute for Climate Prediction (IRI) that enables the user to gain a more contextual perspective of the current rainfall estimates by comparing them to previous seasons and climatological averages. These resources are available at no cost to the user and are updated on a routine basis.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference11 articles.
1. WHO: Africa Malaria Report. 2003, Geneva: World Health Organization
2. Hay S, Were E, Renshaw M, Noor AM, Ochola S, Olusanmi I: Forecasting, Warning, and Detection of Malaria Epidemics: a Case Study. Lancet. 2003, 361: 1705-1706. 10.1016/S0140-6736(03)13366-1.
3. Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J: Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J. 2004, 3: 41-10.1186/1475-2875-3-41.
4. Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M: Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Weather-based prediction systems perform comparably to early detection systems in identifying times for interventions. Malar J. 2004, 3: 44-10.1186/1475-2875-3-44.
5. WHO: Malaria Early Warning Systems: concepts, indicators and partners: A framework for field research in Africa. Malaria Early Warning Systems: concepts, indicators and partners: A framework for field research in Africa. WHO/CDS/RBM/2001.32. 2001, Geneva: World Health Organization
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献