Author:
Cornock Ruth,Gambling Lorraine,Langley-Evans Simon C,McArdle Harry J,McMullen Sarah
Abstract
Abstract
Background
Iron deficiency anaemia during pregnancy is a global problem, with short and long term consequences for maternal and child health. Animal models have demonstrated that the developing fetus is vulnerable to maternal iron restriction, impacting on postnatal metabolic and blood pressure regulation. Whilst long-term outcomes are similar across different models, the commonality in mechanistic events across models is unknown. This study examined the impact of iron deficiency on maternal and fetal iron homeostasis in two strains of rat.
Methods
Wistar (n=20) and Rowett Hooded Lister (RHL, n=19) rats were fed a control or low iron diet for 4 weeks prior to and during pregnancy. Tissues were collected at day 21 of gestation for analysis of iron content and mRNA/protein expression of regulatory proteins and transporters.
Results
A reduction in maternal liver iron content in response to the low iron diet was associated with upregulation of transferrin receptor expression and a reduction in hepcidin expression in the liver of both strains, which would be expected to promote increased iron absorption across the gut and increased turnover of iron in the liver. Placental expression of transferrin and DMT1+IRE were also upregulated, indicating adaptive responses to ensure availability of iron to the fetus. There were considerable differences in hepatic maternal and fetal iron content between strains. The higher quantity of iron present in livers from Wistar rats was not explained by differences in expression of intestinal iron transporters, and may instead reflect greater materno-fetal transfer in RHL rats as indicated by increased expression of placental iron transporters in this strain.
Conclusions
Our findings demonstrate substantial differences in iron homeostasis between two strains of rat during pregnancy, with variable impact of iron deficiency on the fetus. Whilst common developmental processes and pathways have been observed across different models of nutrient restriction during pregnancy, this study demonstrates differences in maternal adaptation which may impact on the trajectory of the programmed response.
Publisher
Springer Science and Business Media LLC
Subject
Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology
Reference33 articles.
1. World Health Organisation: Assessing the iron status of populations. 2007, Geneva: WHO
2. World Health Organisation: Worldwide prevalence of anaemia 1993–2005. WHO Global Database on Anaemia. 2008, Geneva: WHO
3. Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL: Prevalence of iron deficiency in the United States. JAMA. 1997, 277: 973-976. 10.1001/jama.1997.03540360041028.
4. Scholl TO, Hediger ML, Fischer RL, Shearer JW: Anemia vs iron deficiency - increased risk of preterm delivery in a prospective study. Am J Clin Nutr. 1992, 55: 985-988.
5. Lone FW, Qureshi RN, Emanuel F: Maternal anaemia and its impact on perinatal outcome. Trop Med Int Health. 2004, 9: 486-490. 10.1111/j.1365-3156.2004.01222.x.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献