Gene expression profiles of mouse spermatogenesis during recovery from irradiation

Author:

Shah Fozia J,Tanaka Masami,Nielsen John E,Iwamoto Teruaki,Kobayashi Shinichi,Skakkebæk Niels E,Leffers Henrik,Almstrup Kristian

Abstract

Abstract Background Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. Methods Adult mouse testes were subjected to irradiation with 1 Gy or a fractionated radiation of two times 1 Gy. Testes were sampled every third or fourth day to follow the recovery of spermatogenesis and gene expression profiles generated by means of differential display RT-PCR. In situ hybridization was in addition performed to verify cell-type specific gene expression patterns. Results Irradiation of mice testis created a gap in spermatogenesis, which was initiated by loss of A1 to B-spermatogonia and lasted for approximately 10 days. Irradiation with 2 times 1 Gy showed a more pronounced effect on germ cell elimination than with 1 Gy, but spermatogenesis was in both cases completely reconstituted 42 days after irradiation. Comparison of expression profiles indicated that the cellular reconstitution appeared equivalent to what is observed during induction of normal spermatogenesis. Conclusion The data indicates that recovery of spermatogenesis can be monitored by means of gene expression, which could aid in designing radiation treatment regimes for cancer patients leading to better restoration of spermatogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3