Expression of ATP-sensitive potassium channels in human pregnant myometrium

Author:

Xu Chen,You Xingji,Gao Lu,Zhang Lanmei,Hu Rong,Hui Ning,Olson David M,Ni Xin

Abstract

Abstract Background Potassium channels play critical roles in the regulation of cell membrane potential, which is central to the excitability of myometrium. The ATP-sensitive potassium (KATP) channel is one of the most abundant potassium channels in myometrium. The objectives of this study were to investigate the protein expression of KATP channel in human myometrium and determine the levels of KATP channel in lower and upper segmental myometrium before and after onset of labour. Methods Both lower segmental (LS) and upper segmental (US) myometrial biopsies were collected at cesarean section from pregnant women not-in-labour (TNL) or in-labour (TL) at term. Protein expression level and cellular localization of four KATP channel subunits in US and LS myometrium were determined by Western blot analysis and immunohistochemistry, respectively. The contractile activity of myometrial strip was measured under isometric conditions. Results Four KATP channel subunits, namely Kir6.1, Kir6.2, SUR1 and SUR2B were identified in pregnant myometrium. While found in vascular myocytes, these subunits appear to be preferentially expressed in myometrial myocytes. Diazoxide, a KATP channel opener, inhibited the spontaneous contractility of pregnant myometrium, suggesting that the KATP channels are functional in human pregnant myometrium. Diazoxide was less potent in TL strips than that in TNL strips. Interestingly, expression of SUR1 was greater in TL than TNL tissues, although no differences were found for SUR2B in these two tissues. For both lower and upper segmental myometrium, Kir6.1 and Kir6.2 were less in TL compared with TNL tissues. Conclusions Functional KATP channels are expressed in human pregnant myometrium. Down-regulation of Kir6.1 and Kir6.2 expression in myometrium may contribute to the enhanced uterine contractility associated with the onset of labour.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynaecology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3