Author:
Simard Marc,Provost Pierre R,Tremblay Yves
Abstract
Abstract
Background
In human, respiratory distress of the neonates, which occurs in prematurity, is prevalent in male. Late in gestation, maturation of type II pneumonocytes, and consequently the surge of surfactant synthesis are delayed in male fetuses compared with female fetuses. Although the presence of higher levels of androgens in male fetuses is thought to explain this sex difference, the identity of genes involved in lung maturation that are differentially modulated according to fetal sex is unknown. We have studied the sex difference in developing mouse lung by gene profiling during a three-day gestational window preceding and including the emergence of mature PTII cells (the surge of surfactant synthesis in the mouse occurs on GD 17.5).
Methods
Total RNA was extracted from lungs of male and female fetal mice (gestation days 15.5, 16.5, and 17.5), converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays (Affymetrix MOE430A). Analysis of data was performed using MAS5.0, LFCM and Genesis softwares.
Results
Many genes involved in lung maturation were expressed with no sex difference. Of the approximative 14 000 transcripts covered by the arrays, only 83 genes presented a sex difference at one or more time points between GDs 15.5 and 17.5. They include genes involved in hormone metabolism and regulation (i.e. steroidogenesis pathways), apoptosis, signal transduction, transcriptional regulation, and lipid metabolism with four apolipoprotein genes. Genes involved in immune functions and other metabolisms also displayed a sex difference.
Conclusion
Among these sexually dimorphic genes, some may be candidates for a role in lung maturation. Indeed, on GD 17.5, the sex difference in surfactant lipids correlates with the sex difference in pulmonary expression of apolipoprotein genes, which are involved in lipid transport. This suggests a role for these genes in the surge of surfactant synthesis. Our results would help to identify novel genes involved in the physiopathology of the respiratory distress of the neonates.
Publisher
Springer Science and Business Media LLC
Subject
Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynaecology
Reference52 articles.
1. Farrell PM, Avery ME: Hyaline membrane disease. Am Rev Respir Dis. 1975, 111: 657-688.
2. Papageorgiou AN, Colle E, Farri-Kostopoulos E, Gelfand MM: Incidence of respiratory distress syndrome following antenatal betamethasone: role of sex, type of delivery, and prolonged rupture of membranes. Pediatrics. 1981, 67: 614-617.
3. Nielsen HC: Androgen receptors influence the production of pulmonary surfactant in the testicular feminization mouse fetus. J Clin Invest. 1985, 76: 177-181.
4. Perelman RH, Palta M, Kirby R, Farrell PM: Discordance between male and female deaths due to the respiratory distress syndrome. Pediatrics. 1986, 78: 238-244.
5. Ballard PL: Hormonal regulation of pulmonary surfactant. Endocr Rev. 1989, 10: 165-181.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献