Molecular patterns of sex determination in the animal kingdom: a comparative study of the biology of reproduction

Author:

Manolakou Panagiota,Lavranos Giagkos,Angelopoulou Roxani

Abstract

Abstract Determining sexual fate is an integral part of reproduction, used as a means to enrich the genome. A variety of such regulatory mechanisms have been described so far and some of the more extensively studied ones are being discussed. For the insect order of Hymenoptera, the choice lies between uniparental haploid males and biparental diploid females, originating from unfertilized and fertilized eggs accordingly. This mechanism is also known as single-locus complementary sex determination (slCSD). On the other hand, for Dipterans and Drosophila melanogaster, sex is determined by the ratio of X chromosomes to autosomes and the sex switching gene, sxl. Another model organism whose sex depends on the X:A ratio, Caenorhabditis elegans, has furthermore to provide for the brief period of spermatogenesis in hermaphrodites (XX) without the benefit of the "male" genes of the sex determination pathway. Many reptiles have no discernible sex determining genes. Their sexual fate is determined by the temperature of the environment during the thermosensitive period (TSP) of incubation, which regulates aromatase activity. Variable patterns of sex determination apply in fish and amphibians. In birds, while sex chromosomes do exist, females are the heterogametic (ZW) and males the homogametic sex (ZZ). However, we have yet to decipher which of the two (Z or W) is responsible for the choice between males and females. In mammals, sex determination is based on the presence of two identical (XX) or distinct (XY) gonosomes. This is believed to be the result of a lengthy evolutionary process, emerging from a common ancestral autosomal pair. Indeed, X and Y present different levels of homology in various mammals, supporting the argument of a gradual structural differentiation starting around the SRY region. The latter initiates a gene cascade that results in the formation of a male. Regulation of sex steroid production is also a major result of these genetic interactions. Similar observations have been described not only in mammals, but also in other vertebrates, emphasizing the need for further study of both normal hormonal regulators of sexual phenotype and patterns of epigenetic/environmental disruption.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynaecology

Reference75 articles.

1. Mittwoch U: Sex is a threshold dichotomy mimicking a single gene effect. Trends Genet. 2006, 22: 96-100. 10.1016/j.tig.2005.12.003.

2. Manolakou P, Angelopoulou R, Lavranos G: Sex Determinants in the Genome: Lessons from the Animal Kingdom. Coll Antropol. 2006, 30: 649-52.

3. Schartl M: Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev. 2004, 14: 634-641. 10.1016/j.gde.2004.09.005.

4. Howard J: Mitochondrial Eve, Y chromosome Adam, testosterone and human evolution. Riv Biol. 2002, 95: 319-325.

5. Lavranos G, Angelopoulou R, Manolakou P, Balla M: Hormonal and Meta-Hormonal Determinants of Sexual Dimorphism. Coll Antropol. 2006, 30: 659-63.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3