Evaluation of human first trimester decidual and telomerase-transformed endometrial stromal cells as model systems of in vitro decidualization

Author:

Saleh Leila,Otti Gerlinde R,Fiala Christian,Pollheimer Jürgen,Knöfler Martin

Abstract

Abstract Background Decidualization, the differentiation process of maternal uterine stromal cells into secretory decidual cells, is a prerequisite for successful implantation and progression of pregnancy. For in vitro differentiation mostly primary human endometrial stromal cells (HESC) isolated from uterine samples after hysterectomy for benign gynaecological diseases are utilised. However, a continuous supply of endometrial tissue is often lacking. Hence, we analysed whether cultivated human decidual stromal cells (HDSC) prepared from first trimester pregnancy terminations may represent an alternative model system for in vitro decidualization. Moreover, based on the expression of critical marker genes these cells were compared to a previously established endometrial stromal cell line during in vitro differentiation. Methods HDSC isolated from decidual tissue attached to first trimester placentae, and telomerase-transformed human endometrial stromal cells (THESC) were characterised by immunofluorescence and differentiated in vitro using either cyclic adenosine monophosphate (cAMP) and/or estrogen (E2)/progesterone (P4). Proliferation was measured by analyzing cumulative cell numbers. Expression of mRNAs encoding progesterone receptor (PR), prolactin (PRL), insulin-like growth factor binding protein-1 (IGFBP1), and Dickkopf-1 (DKK1) was evaluated using quantitative PCR after 3, 6, 9 and 12 days of in vitro differentiation. PRL and IGFBP-1 protein expression was investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. Furthermore, forkhead box O1A (FOXO1A), a critical transcription factor in decidualization, was analysed by immunofluorescence and Western blotting at two different time points of differentiation. Results Treatment with cAMP provoked morphological changes and growth arrest of THESC and HDSC, the latter showing loss of cells after 6 days of treatment. E2P4 stimulation did neither affect cell morphology nor proliferation of THESC and HDSC. Upon cAMP stimulation PR mRNA was suppressed in HDSC but not in THESC, whereas E2P4 did not alter transcript levels in both cell types. Protein expression of PR-A and PR-B was detectable in HDSC and diminished under cAMP, whereas THESC failed to produce the nuclear receptors. Supplementation of cAMP induced mRNA and protein expression of PRL and IGFBP-1 in both cell types at day 3, 6, 9, and 12 of treatment. In HDSC stimulation with E2P4 increased PRL and IGFBP-1 mRNA and protein production, whereas hormone treatment did not induce the two factors in THESC. E2P4 increased DKK1 mRNA at all time points in HDSC and cAMP provoked induction at day 9 and 12 of differentiation. In contrast, cAMP suppressed DKK1 mRNA in THESC, whereas E2P4 was ineffective. In both cell types combined treatments with cAMP and E2P4 provoked higher expression levels of PRL and IGFBP1 mRNA and protein as compared to cAMP stimulation alone. FOXO1A protein and its nuclear abundance were increased by cAMP in both cell types. However, reduction of its nuclear localisation upon E2P4 treatment could only be observed in HDSC. Conclusion Both HDSC and THESC may represent suitable model systems for cAMP-dependent in vitro decidualization. Since cAMP decreases cell viability of HDSC after 6 days of incubation, this substance should be preferentially used in short-term experiments. Progesterone treatment of THESC might not be applicable since these cells lack progesterone response and PR protein. In contrast, stimulation of PR-expressing HDSC with E2P4 or cAMP/E2P4 may represent an appropriate protocol for human in vitro decidualization inducing and maintaining expression of critical marker genes in a time-dependent manner.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3