Abstract
AbstractWe present the black hole accretion code (), a new multidimensional general-relativistic magnetohydrodynamics module for the framework. has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radiative transfer code, . The resulting synthetic intensity maps of accretion onto black holes are found to be convergent with increasing resolution and are anticipated to play a crucial role in the interpretation of horizon-scale images resulting from upcoming radio observations of the source at the Galactic Center.
Funder
European Research Council
European Cooperation in Science and Technology
LOEWE HIC FOR FAIR
Horizon 2020
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献