On the parallelization of stellar evolution codes

Author:

Martin David,José JordiORCID,Longland Richard

Abstract

AbstractMultidimensional nucleosynthesis studies with hundreds of nuclei linked through thousands of nuclear processes are still computationally prohibitive. To date, most nucleosynthesis studies rely either on hydrostatic/hydrodynamic simulations in spherical symmetry, or on post-processing simulations using temperature and density versus time profiles directly linked to huge nuclear reaction networks.Parallel computing has been regarded as the main permitting factor of computationally intensive simulations. This paper explores the different pros and cons in the parallelization of stellar codes, providing recommendations on when and how parallelization may help in improving the performance of a code for astrophysical applications.We report on different parallelization strategies succesfully applied to the spherically symmetric, Lagrangian, implicit hydrodynamic code , extensively used in the modeling of classical novae and type I X-ray bursts.When only matrix build-up and inversion processes in the nucleosynthesis subroutines are parallelized (a suitable approach for post-processing calculations), the huge amount of time spent on communications between cores, together with the small problem size (limited by the number of isotopes of the nuclear network), result in a much worse performance of the parallel application compared to the 1-core, sequential version of the code. Parallelization of the matrix build-up and inversion processes in the nucleosynthesis subroutines is not recommended unless the number of isotopes adopted largely exceeds 10,000.In sharp contrast, speed-up factors of 26 and 35 have been obtained with a parallelized version of , in a 200-shell simulation of a type I X-ray burst carried out with two nuclear reaction networks: a reduced one, consisting of 324 isotopes and 1392 reactions, and a more extended network with 606 nuclides and 3551 nuclear interactions. Maximum speed-ups of ∼41 (324-isotope network) and ∼85 (606-isotope network), are also predicted for 200 cores, stressing that the number of shells of the computational domain constitutes an effective upper limit for the maximum number of cores that could be used in a parallel application.

Funder

Generalitat de Catalunya

Ministerio de Economía y Competitividad

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference32 articles.

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, pp. 483–485. ACM Publ., New York (1967)

2. Amestoy, P., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. CERFACS, Tech. Rep., Toulouse, France (2004)

3. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001)

4. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Li, X.S.: Performance and tuning of two distributed memory sparse solvers. In: Meza, J., Koelbel, C. (eds.) Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing. Society for Industrial & Applied Mathematics, Portsmouth (2001)

5. Bader, G., Deuflhard, P.: A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 41, 373–398 (1983)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 123–321 models of classical novae;Astronomy & Astrophysics;2020-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3