Author:
Lopes Vanessa F,Cabral Hamilton,Machado Luciana PB,Mateus Rogério P
Abstract
Abstract
Background
After duplication, one copy of an original gene can become redundant and decay toward a pseudogene status or functionally diverge. Here, we performed the purification and biochemical characterization of EST-4 (a late larval β-esterase) from two Drosophila repleta group species, Drosophila mulleri and Drosophila arizonae, in order to establish comparative parameters between these enzymes in these species and to contribute to better understand their evolution.
Results
In D. mulleri, EST-4 had an optimal activity in temperatures ranging from 40° to 45°C and at pH 7.5, maintaining stability in alkaline pH (8.0 to 10.0). It was classified as serine esterase as its activity was inhibited by PMSF. No ion negatively modulated EST-4 activity, and iron had the most positive modulating effect. In D. arizonae, it showed similar optimum temperature (40°C), pH (8.0), and was also classified as a serine esterase, but the enzymatic stability was maintained in an acidic pH (5.5 to 6.5). Fe+2 had the opposite effect found in D. mulleri, that is, negative modulation. Al+3 almost totally inhibited the EST-4 activity, and Na+ and Cu+2 had a positive modulation effect. Kinetic studies, using ρ-nitrophenyl acetate as substrate, showed that EST-4 from D. mulleri had higher affinity, while in D. arizonae, it showed higher V
max and catalytic efficiency in optimal reaction conditions.
Conclusions
EST-4 from D. mulleri and D. arizonae are very closely related and still maintain several similar features; however, they show some degree of differentiation. Considering that EST-4 from D. mulleri has more conspicuous gel mobility difference among all EST-4 studied so far and a lower catalytic efficiency was observed here, we proposed that after duplication, this new copy of the original gene became redundant and started to decay toward a pseudogene status in this species, which probably is not occurring in D. arizonae.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology