Effect of induced dNTP pool imbalance on HIV-1 reverse transcription in macrophages

Author:

Shepard Caitlin,Xu Joella,Holler Jessica,Kim Dong-Hyun,Mansky Louis M.,Schinazi Raymond F.,Kim BaekORCID

Abstract

AbstractBackgroundTerminally differentiated/nondividing macrophages, a key target cell type of HIV-1, harbor extremely low dNTP concentrations established by a host dNTP triphosphohydrolase, SAM domain and HD domain containing protein 1 (SAMHD1). We tested whether the induction of dNTP pool imbalance can affect HIV-1 replication in macrophages. For this test, we induced a large dNTP pool imbalance by treating human primary monocyte derived macrophages with either one or three of the four deoxynucleosides (dNs), which are phosphorylated to dNTPs in cells, to establish two different dNTP imbalance conditions in macrophages.ResultsThe transduction efficiency and 2-LTR circle copy number of HIV-1 GFP vector were greatly diminished in human primary macrophages treated with the biased dN treatments, compared to the untreated macrophages. We also observed the induced dNTP bias blocked the production of infectious dual tropic HIV-1 89.6 in macrophages. Moreover, biochemical DNA synthesis by HIV-1 reverse transcriptase was significantly inhibited by the induced dNTP pool imbalance. Third, the induced dNTP bias increased the viral mutant rate by approximately 20–30% per a single cycle infection. Finally, unlike HIV-1, the single dN treatment did not significantly affect the transduction of SIVmac239-based GFP vector encoding Vpx in macrophages. This is likely due to Vpx, which can elevate all four dNTP levels even with the single dN treatment.ConclusionCollectively, these data suggest that the elevated dNTP pool imbalance can induce kinetic block and mutation synthesis of HIV-1 in macrophages.

Funder

National Institute of Allergy and Infectious Diseases

National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3