Abstract
Abstract
Background
Bone marrow stromal antigen 2 (BST-2) also known as Tetherin (CD317/HM1.24), is a host restriction factor that blocks the release of HIV-1 virions from infected cells. Previous studies reported that BST-2 genetic variants or single nucleotide polymorphims (SNPs) have a preventative role during HIV-1 infection. However, the influence of BST-2 SNPs on expression levels remains unknown. In this study, we investigated the influence of BST-2 SNPs on expression levels and disease outcome in HIV-1 subtype C chronically infected antiretroviral therapy naïve individuals.
Results
We quantified BST-2 mRNA levels in peripheral blood mononuclear cells (PBMCs), determined BST-2 protein expression on the surface of CD4+ T cells using flow cytometry and genotyped two intronic single nucleotide polymorphisms (SNPs) rs919267 and rs919266 together with one SNP rs9576 located in the 3’ untranslated region (UTR) of bst-2 gene using TaqMan assays from HIV-1 uninfected and infected participants. Subsequently, we determined the ability of plasma antibody levels to mediate antibody-dependent cellular phagocytosis (ADCP) using gp120 consensus C and p24 subtype B/C protein. Fc receptor-mediated NK cell degranulation was evaluated as a surrogate for ADCC activity using plasma from HIV-1 positive participants. BST-2 mRNA expression levels in PBMCs and protein levels on CD4+ T cells were lower in HIV-1 infected compared to uninfected participants (p = 0.075 and p < 0.001, respectively). rs919267CT (p = 0.042) and rs919267TT (p = 0.045) were associated with lower BST-2 mRNA expression levels compared to rs919267CC in HIV-1 uninfected participants. In HIV-1 infected participants, rs919267CT associated with lower CD4 counts, (p = 0.003), gp120-IgG1 (p = 0.040), gp120-IgG3 (p = 0.016) levels but higher viral loads (p = 0.001) while rs919267TT was associated with lower BST-2 mRNA levels (p = 0.046), CD4 counts (p = 0.001), gp120-IgG1 levels (p = 0.033) but higher plasma viral loads (p = 0.007). Conversely, rs9576CA was associated with higher BST-2 mRNA expression levels (p = 0.027), CD4 counts (p = 0.079), gp120-IgG1 (p = 0.009), gp120-IgG3 (p = 0.039) levels but with lower viral loads (p = 0.037).
Conclusion
Our findings show that bst-2 SNPs mediate BST-2 expression and disease outcome, correlate with gp120-IgG1, gp120-IgG3 levels but not p24-IgG levels, ADCC and ADCP activity.
Graphical Abstract
Funder
Poliomyelitis Research Foundation
South African Research Chairs Initiative
Victor Daitz Foundation
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology