Single-cell analysis of immune cell transcriptome during HIV-1 infection and therapy

Author:

Pollara Justin,Khanal Santosh,Edwards R. Whitney,Hora Bhavna,Ferrari Guido,Haynes Barton F.,Bradley Todd

Abstract

Abstract Background Cellular immune responses are phenotypically and functionally perturbed during HIV-1 infection, with the majority of function restored upon antiretroviral therapy (ART). Despite ART, residual inflammation remains that can lead to HIV-related co-morbidities and mortality, indicating that ART does not fully restore normal immune cell function. Thus, understanding the dynamics of the immune cell landscape during HIV-1 infection and ART is critical to defining cellular dysfunction that occurs during HIV-1 infection and imprints during therapy. Results Here, we have applied single-cell transcriptome sequencing of peripheral blood immune cells from chronic untreated HIV-1 individuals, HIV-1-infected individuals receiving ART and HIV-1 negative individuals. We also applied single-cell transcriptome sequencing to a primary cell model of early HIV-1 infection using CD4+ T cells from healthy donors. We described changes in the transcriptome at high resolution that occurred during HIV-1 infection, and perturbations that remained during ART. We also determined transcriptional differences among T cells expressing HIV-1 transcripts that identified key regulators of HIV-1 infection that may serve as targets for future therapies to block HIV-1 infection. Conclusions This work identified key molecular pathways that are altered in immune cells during chronic HIV-1 infection that could remain despite therapy. We also identified key genes that are upregulated during early HIV-1 infection that provide insights on the mechanism of HIV-1 infection and could be targets for future therapy.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3