Analysis of multivariate longitudinal immuno-epidemiological data using a pairwise joint modelling approach

Author:

Lubyayi LawrenceORCID,Mawa Patrice A.,Cose Stephen,Elliott Alison M.,Levin Jonathan,Webb Emily L.

Abstract

Abstract Background Immuno-epidemiologists are often faced with multivariate outcomes, measured repeatedly over time. Such data are characterised by complex inter- and intra-outcome relationships which must be accounted for during analysis. Scientific questions of interest might include determining the effect of a treatment on the evolution of all outcomes together, or grouping outcomes that change in the same way. Modelling the different outcomes separately may not be appropriate because it ignores the underlying relationships between outcomes. In such situations, a joint modelling strategy is necessary. This paper describes a pairwise joint modelling approach and discusses its benefits over more simple statistical analysis approaches, with application to data from a study of the response to BCG vaccination in the first year of life, conducted in Entebbe, Uganda. Methods The study aimed to determine the effect of maternal latent Mycobacterium tuberculosis infection (LTBI) on infant immune response (TNF, IFN-γ, IL-13, IL-10, IL-5, IL-17A and IL-2 responses to PPD), following immunisation with BCG. A simple analysis ignoring the correlation structure of multivariate longitudinal data is first shown. Univariate linear mixed models are then used to describe longitudinal profiles of each outcome, and are then combined into a multivariate mixed model, specifying a joint distribution for the random effects to account for correlations between the multiple outcomes. A pairwise joint modelling approach, where all possible pairs of bivariate mixed models are fitted, is then used to obtain parameter estimates. Results Univariate and pairwise longitudinal analysis approaches are consistent in finding that LTBI had no impact on the evolution of cytokine responses to PPD. Estimates from the pairwise joint modelling approach were more precise. Major advantages of the pairwise approach include the opportunity to test for the effect of LTBI on the joint evolution of all, or groups of, outcomes and the ability to estimate association structures of the outcomes. Conclusions The pairwise joint modelling approach reduces the complexity of analysis of high-dimensional multivariate repeated measures, allows for proper accounting for association structures and can improve our understanding and interpretation of longitudinal immuno-epidemiological data.

Funder

UK Medical Research Council

The DELTAS Africa Initiative SSACAB

DELTAS Africa Initiative MUIIplus

Commonwealth Scholarship Commission

Publisher

Springer Science and Business Media LLC

Subject

Immunology

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3