Conformational flexibility of a free and TCR-bound pMHC-I protein investigated by long-term molecular dynamics simulations

Author:

Tomasiak Lisa,Karch RudolfORCID,Schreiner Wolfgang

Abstract

Abstract Background Major histocompatibility complexes (MHCs) play a crucial role in the cell-mediated adaptive immune response as they present antigenic peptides (p) which are recognized by host T cells through a complex formation of the T cell receptor (TCR) with pMHC. In the present study, we report on changes in conformational flexibility within a pMHC molecule upon TCR binding by looking at molecular dynamics (MD) simulations of the free and the TCR-bound pMHC-I protein of the LC13-HLA-B*44:05-pEEYLQAFTY complex. Results We performed long-term MD simulations with a total simulation time of 8 µs, employing 10 independent 400 ns replicas for the free and the TCR-bound pMHC system. Upon TCR ligation, we observed a reduced dynamic flexibility in the central residues of the peptide and the MHC α1-helix, altered occurrences of hydrogen bonds between the peptide and the MHC, a reduced conformational entropy of the peptide-binding groove, as well as a decreased solvent accessible surface area. Conclusions In summary, our results from 8 µs MD simulations indicate a restricted conformational space of the MHC peptide-binding groove upon TCR ligation and suggest a minimum simulation time of approximately 100 ns for biomolecules of comparable complexity to draw meaningful conclusions. Given the relatively long total simulation time, our results contribute to a more detailed view on conformational flexibility properties of the investigated free and TCR-bound pMHC-I system.

Publisher

Springer Science and Business Media LLC

Subject

Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3