Author:
Xie Zhimin,Dai Xiangnong,Li Qingqing,Lin Sifan,Ye Xingdong
Abstract
Abstract
Background
Glucocorticoids are the first-line treatment for Pemphigus vulgaris (PV), but its serious side effects can be life-threatening for PV patients. Tacrolimus (FK506) has been reported to have an adjuvant treatment effect against PV. However, the mechanism underlying the inhibitory effect of FK506 on PV-IgG-induced acantholysis is unclear.
Objective
The objective of this study was to explore the effect of FK506 on desmoglein (Dsg) expression and cell adhesion in an immortalized human keratinocyte cell line (HaCaT cells) stimulated with PV sera.
Methods
A cell culture model of PV was established by stimulating HaCaT cells with 5% PV sera with or without FK506 and clobetasol propionate (CP) treatment. The effects of PV sera on intercellular junctions and protein levels of p38 mitogen-activated protein kinase (p38MAPK), heat shock protein 27 (HSP27), and Dsg were assayed using western blot analysis, immunofluorescence staining, and a keratinocyte dissociation assay.
Results
PV sera-induced downregulation of Dsg3 was observed in HaCaT cells and was blocked by FK506 and/or CP. Immunofluorescence staining revealed that linear deposits of Dsg3 on the surface of HaCaT cells in the PV sera group disappeared and were replaced by granular and agglomerated fluorescent particles on the cell surface; however, this effect was reversed by FK506 and/or CP treatment. Furthermore, cell dissociation assays showed that FK506 alone or in combination with CP increased cell adhesion in HaCaT cells and ameliorated loss of cell adhesion induced by PV sera. Additionally, FK506 noticeably decreased the PV serum-induced phosphorylation of HSP 27, but had no effect on p38MAPK phosphorylation.
Conclusion
FK506 reverses PV-IgG induced-Dsg depletion and desmosomal dissociation in HaCaT cells, and this effect may be obtained by inhibiting HSP27 phosphorylation.
Funder
“Scientific research plan (2019)” Guangzhou Science and Technology Bureau
the School & Institute Joint Fund Project in basic and applied research areas” Guangzhou Science and Technology Bureau 2023
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献