Concurrent mapping of multiple epigenetic marks and co-occupancy using ACT2-seq

Author:

Carter Benjamin,Ku Wai Lim,Pelt Joe,Zhao Keji

Abstract

Abstract Background Genome-wide profiling of epigenetic marks is a core technology in molecular genetics. Co-occupancy of different epigenetic marks or protein factors at the same genomic locations must often be inferred from multiple independently collected data sets. However, this strategy does not provide direct evidence of co-enrichment in the same cells due to the existence of cellular heterogeneity. To address this issue, we have developed a technique termed ACT2-seq that is capable of concurrently profiling multiple epigenetic marks in a single biological sample. In addition to reducing the numbers of samples required for experiments, ACT2-seq is capable of mapping co-occupancy of epigenetic factors on chromatin. This strategy provides direct evidence of co-enrichment without requiring complex single-molecule, single-cell, or magnetic bead-based approaches. Results We concurrently profiled pairs of two epigenetic marks using ACT2-seq as well as three marks in individual samples. Data obtained using ACT2-seq were found to be reproducible and robust. ACT2-seq was capable of cleanly partitioning concurrently mapped data sets that exhibited distinct enrichment patterns. Using ACT2-seq, we identified distinct relationships between co-occupancy of specific histone modifications and gene expression patterns. Conclusions We conclude that ACT2-seq presents an attractive option for epigenomic profiling due to its ease of use, potential for reducing sample and sequencing costs, and ability to simultaneously profile co-occupancy of multiple histone marks and/or chromatin-associated proteins.

Funder

Division of Intramural Research, National Heart, Lung, and Blood Institute

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3