SNHG6 modulates oxidized low-density lipoprotein-induced endothelial cells injury through miR-135a-5p/ROCK in atherosclerosis

Author:

Shan Haiyan,Guo Dawei,Zhang Siyang,Qi Huimeng,Liu Shen,Du Yanmei,He Yini,Wang Bofu,Xu Ming,Yu Xiaosong

Abstract

Abstract Background Plenty of long non-coding RNAs (lncRNAs) play vital roles in the progression of atherosclerosis. Small nucleolar RNA host gene 6 (SNHG6) is a well known lncRNA that is aberrantly high expressed in atherosclerosis patients. However, its function and basic mechanism in atherosclerosis events have not been well clarified. Methods The expression patterns of SNHG6, miR-135a-5p, ROCK1 and ROCK2 in clinical samples and cells were detected by RT-qPCR assays. Cell Counting Kit-8 (CCK-8), flow cytometry assays, ELISA and reactive oxygen species (ROS) and malondialdehyde (MDA) detection, were performed to assess cell viability, apoptosis, inflammation and oxidative stress, respectively. Western blot analysis was carried out to examine the protein levels of Bax, Bcl-2, and SNHG6. Luciferase reporter and RIP assays were used to confirm the true interaction between SNHG6 and miR-135a-5p, or miR-135a-5p and ROCK. Results The levels of SNHG6, ROCK1 and ROCK2 were notably increased and miR-135a-5p was decreased in atherosclerosis patients and oxidized low-density lipoprotein (ox-LDL)-treated HUVECs. Knockdown of SNHG6 alleviated ox-LDL-induced injury of HUVECs, while this effect was partly reversed by miR-135a-5p inhibitor. Moreover, overexpression of ROCKs aggravated miR-135a-5p-alleviated atherosclerosis cell injury. SNHG6 contributed to ROCK expression through sequestering miR-135a-5p as a molecular sponge. Conclusion SNHG6 functions as a promoter in atherosclerosis events by targeting miR-135a-5p/ROCK axis in ox-LDL-stimulated HUVECs. This finding will help to develop a novel therapeutic strategy for atherosclerosis.

Funder

National Natural Science Foundation of China

Science and Technology Project of Liaoning Province

Science Foundation Project of Shenyang

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3