Abstract
Abstract
Background
The synthesis and secretion of renin in juxtaglomerular (JG) cells are closely regulated by the blood pressure. To date, however, the molecular identity through which JG cells respond to the blood pressure remains unclear.
Results
Here we discovered that Piezo1, a mechanosensitive ion channel, was colocalized with renin in mouse kidney as well as As4.1 cells, a commonly used JG cell line. Activation of Piezo1 by its agonist Yoda1 induced an intracellular calcium increase and downregulated the expression of renin in these cells, while knockout of Piezo1 in JG cells abolished the effect of Yoda1. Meanwhile, mechanical stress using microfluidics also induced an intracellular calcium increase in wildtype but not Piezo1 knockout JG cells. Mechanistically, we demonstrated that activation of Piezo1 upregulated the Ptgs2 expression via the calcineurin-NFAT pathway and increased the production of Ptgs2 downstream molecule PGE2 in JG cells. Surprisingly, we discovered that increased PGE2 could decreased the renin expression through the PGE2 receptor EP1 and EP3, which inhibited the cAMP production in JG cells. In mice, we found that activation of Piezo1 significantly downregulated the renin expression and blood pressure in wildtype but not adeno-associated virus (AAV)-mediated kidney specific Piezo1 knockdown mice.
Conclusions
In summary, these results revealed that activation of Piezo1 could downregulate the renin expression in JG cells and mice, subsequently a reduction of blood pressure, highlighting its therapeutic potential as a drug target of the renin-angiotensin system.
Funder
National Natural Science Foundation of China
Guangdong Science and Technology Department
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献