Anti-tumor effects of dual PI3K-HDAC inhibitor CUDC-907 on activation of ROS-IRE1α-JNK-mediated cytotoxic autophagy in esophageal cancer

Author:

Jian Zheng,Han Yichao,Zhang Wentian,Li Chengqiang,Guo Wei,Feng Xijia,Li Bin,Li HechengORCID

Abstract

Abstract Background PI3K-Akt pathway activation and the expression of histone deacetylases (HDACs) are highly increased in esophageal cancer, suggesting that inhibition of such targets may be a viable therapeutic strategy. Herein, we aimed to evaluate the anti-tumor effect of CUDC-907, a dual PI3K-HDAC inhibitor, in esophageal squamous cell carcinoma (ESCC). Methods The anti-tumor effects of CUDC-907 in ESCC were evaluated using cell counting kit-8, flow cytometry, and western blot. mRNA-sequencing was used to explore the mechanism underlying CUDC-907 anti-tumor effects. The relations of reactive oxygen species (ROS), lipocalin 2 (LCN2), and CUDC-907 were determined by flow cytometry, rescue experiments, and western blot. The activation of the IRE1α-JNK-CHOP signal cascade was confirmed by western blot. The in vivo inhibitory effects of CUDC-907 were examined by a subcutaneous xenograft model in nude mice. Results CUDC-907 displayed effective inhibition in the proliferation, migration, and invasion of ESCC cells. Through an mRNA-sequencing and functional enrichment analysis, autophagy was found to be associated with cancer cells death. CUDC-907 not only inhibited the PI3K-Akt-mTOR pathways to result in autophagy, but also induced ROS accumulation to activate IRE1α-JNK-CHOP-mediated cytotoxic autophagy by downregulating LCN2 expression. Consistently, the in vivo anti-tumor effects of CUDC-907 accompanied by the downregulated expression of p-mTOR and LCN2 and upregulated expression of p-IRE1α and LC3B-II were evaluated in a xenograft mouse model. Conclusion Our findings suggested the clinical development and administration of CUDC-907 might act as a novel treatment strategy for ESCC. A more in-depth understanding of the anti-tumor effect of CUDC-907 in ESCC will benefit the clinically targeted treatment of ESCC.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Foundation Research Project of Jiangsu Province the Natural Science Youth Fund

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3