Author:
Wang Xuan,Tian Sheng,Wang Hansen,Liu Pan,Zheng Heqing,Wu Lanxiang,Liu Qian,Wu Wei
Abstract
AbstractBackgroundBotulinum toxin type A (BTX-A) was considered to be a new potential drug for neuropathic pain (NP) treatment.ResultsIn vivo, BTX-A attenuated chronic compression injury (CCI)-induced pain in rats, and reduced production of pro-inflammatory factors. The inhibition of BTX-A to expression and phosphorylation of SNAP23 were partly reversed by TLR2/MyD88 upregulation. In LPS-stimulated microglia, we also found that BTX-A suppressed TLR2, MyD88, p-SNAP23 and SNAP23 expression, and reduced pro-inflammatory factors secretion. Upregulation of TLR2 and MyD88 recued the inhibition of BTX-A to LPS-induced activation of SNAP23. Then, we demonstrated that BTX-A reduced expression of SNAP23 through inhibition of IKKα/β phosphorylation. Besides, the inhibition of BTX-A to LPS-induced upregulation of SNAP23 can be reversed by proteasome inhibitor. NEDD4, an E3 ubiquitin ligase, was proved to be bind with SNAP23. BTX-A reduced expression of SNAP23 via facilitating ubiquitin-mediated degradation of SNAP23.ConclusionOverall, our data demonstrated that BTX-A attenuated NP via reducing the secretion of pro-inflammatory factors from microglia by inhibition of TLR2/MyD88 signaling. BTX-A downregulated expression of SNAP23 via reducing phosphorylation of IKKα/β, and enhancing ubiquitination of SNAP23 by suppressing TLR2/MyD88 signaling.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献