PRL2 serves as a negative regulator in cell adaptation to oxidative stress

Author:

Du Xinyue,Zhang Yang,Li Xiao,Li Qi,Wu Chenyun,Chen Guangjie,Guo XiaoKui,Weng Yongqiang,Wang Zhaojun

Abstract

AbstractHigh levels of ROS cause oxidative stress, which plays a critical role in cell death. As a ROS effector protein, PRL2 senses ROS and controls phagocyte bactericidal activity during infection. Here we report PRL2 regulates oxidative stress induced cell death. PRL2 senses oxidative stress via highly reactive cysteine residues at 46 and 101. The oxidation of PRL2 causes protein degradation and supports pro-survival PDK1/AKT signal which in turn to protect cells against oxidative stress. As a result, PRL2 levels have a high correlation with oxidative stress induced cell death. In vivo experiments showed PRL2 deficient cells survive better in inflammatory oxidative environment and resist to ionizing radiation. Our finding suggests PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Therefore, PRL2 could be targeted to modulate cell viability in inflammation or irradiation associated therapy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3