Abstract
Abstract
Background
Breast cancer (BC) metastasis is the leading cause of poor prognosis and therapeutic failure. However, the mechanisms underlying cancer metastasis are far from clear.
Methods
We screened candidate genes related to metastasis through genome-wide CRISPR screening and high-throughput sequencing of patients with metastatic BC, followed by a panel of metastatic model assays. The effects of tetratricopeptide repeat domain 17 (TTC17) on migration, invasion, and colony formation ability together with the responses to anticancer drugs were investigated in vitro and in vivo. The mechanism mediated by TTC17 was determined by RNA sequencing, Western blotting, immunohistochemistry, and immunofluorescence. The clinical significance of TTC17 was evaluated using BC tissue samples combined with clinicopathological data.
Results
We identified the loss of TTC17 as a metastasis driver in BC, and its expression was negatively correlated with malignancy and positively correlated with patient prognosis. TTC17 loss in BC cells promoted their migration, invasion, and colony formation capacity in vitro and lung metastasis in vivo. Conversely, overexpressing TTC17 suppressed these aggressive phenotypes. Mechanistically, TTC17 knockdown in BC cells resulted in the activation of the RAP1/CDC42 pathway along with a disordered cytoskeleton in BC cells, and pharmacological blockade of CDC42 abolished the potentiation of motility and invasiveness caused by TTC17 silencing. Research on BC specimens demonstrated reduced TTC17 and increased CDC42 in metastatic tumors and lymph nodes, and low TTC17 expression was linked to more aggressive clinicopathologic characteristics. Through screening the anticancer drug library, the CDC42 inhibitor rapamycin and the microtubule-stabilizing drug paclitaxel showed stronger inhibition of TTC17-silenced BC cells, which was confirmed by more favorable efficacy in BC patients and tumor-bearing mice receiving rapamycin or paclitaxel in the TTC17Low arm.
Conclusions
TTC17 loss is a novel factor promoting BC metastasis, that enhances migration and invasion by activating RAP1/CDC42 signaling and sensitizes BC to rapamycin and paclitaxel, which may improve stratified treatment strategies under the concept of molecular phenotyping-based precision therapy of BC.
Funder
National Natural Science Foundation of China
CAMS Innovation Fund for Medical Sciences
Open Issue of State Key Laboratory of Molecular Oncology
Independent Issue of State Key Laboratory of Molecular Oncology
Beijing Municipal Natural Science Foundation
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献